DOES FREE TRADE INCREASE DEFORESTATION? EFFECTS OF REGIONAL TRADE AGREEMENTS

Ryan Abman and Clark Lundberg J. of the Assoc. of Env. and Res. Econ. 2019 <u>Com</u>mented by L. Hotte (2023)

THE BIG ISSUE

- Deforestation in the developing world is a major problem.
- Expansion of agricultural land is considered a big driver.
- A lot of agri output is meant for exports.
- Does trade contribute to deforestation?

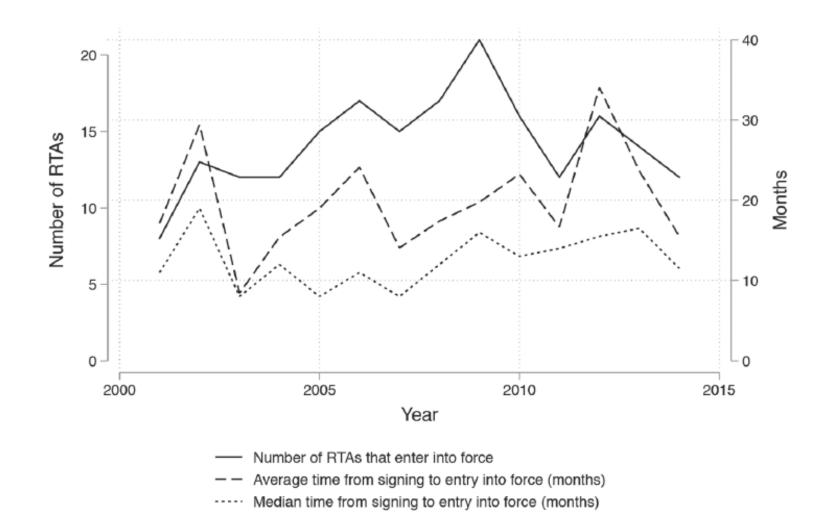
MORE SPECIFICALLY HERE

- Is there more deforestation associated with the enactment of regional trade agreements (RTAs) in developing countries?
- If so, what is the role of agricultural expansion?
- The authors argue that using RTAs, instead of standard measures of trade openness, are less prone to endogeneity issues. (More about this later.)

THE CONTEXT

NBATYPICAL STRUCTURE FOR AN EMPIRICAL PAPER

1. Issues in general terms


- Sometimes a methodology issue (causality, etc) or new data
- 2. The more specific question(s)
- 3. Theoretical arguments
 - Anticipated effects; mechanisms
- 4. Context
 - Geography, period, individuals (firms, workers), socio-economic, ...
- 5. The data
 - 1. Summary statistics
 - 2. Dependent and explanatory variables
- 6. Empirical strategy
- 7. Main results
 - Regression tables
- 8. Robustness checks; Sensitivity analysis
- 9. Conclusion

REGIONAL TRADE AGREEMENT TYPES

- free trade agreements: tariffs reductions within group but own tariffs outside group.
- customs unions: unified external tariffs
- partial scope agreements: limited scope of goods with low tariffs
- economic integration agreements: FTA covers trade in services

RTA PROCESS

- two stages: negotiation + ratification
- lots of uncertainty and delays about time of actual enactment
- Authors argue that "the timing of enactment provide plausibly exogenous variation in trade policy we leverage to study deforestation."
- Authors say that this is the main innovation in this paper. Contribution is more methodological as the same question has been studied before.
- Other typically used "measures of trade may be driven by unobserved changes in local governance, political institutions, agricultural subsidies, and other factors that have also been shown to affect deforestation."

THEORY

LINKS BETWEEN TRADE AND DEFORESTATION

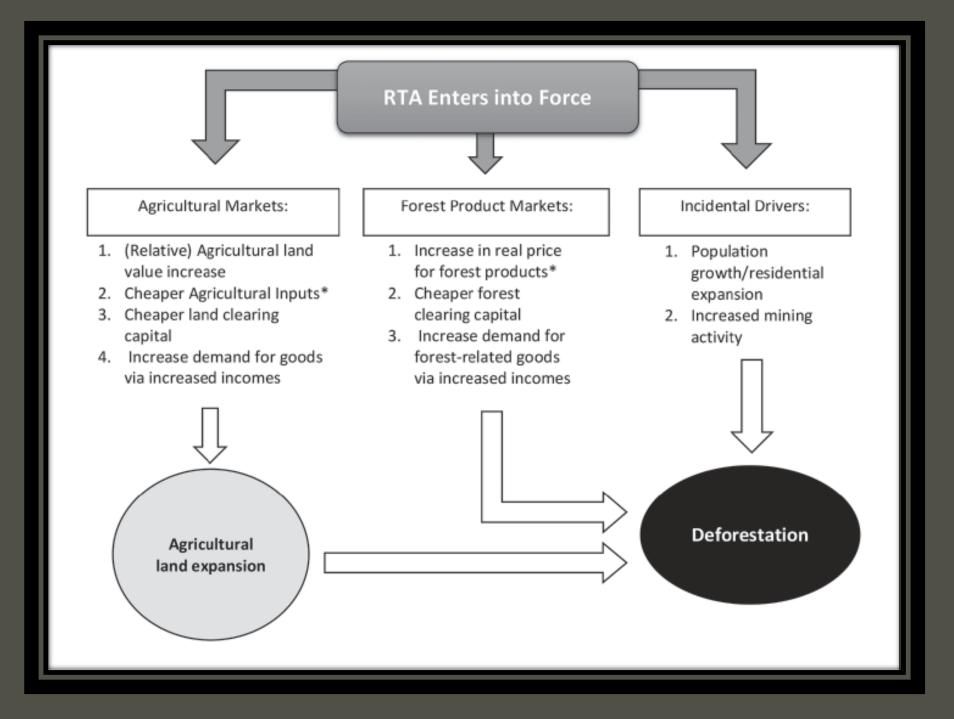
Authors discuss three main mechanisms:

- 1. Agricultural markets
- 2. Forest product markets
- 3. Incidental deforestation

AGRICULTURAL MARKETS

Authors propose four mechanisms associated with how trade liberalization affects agri markets:

- Change in relative value of agricultural land leads to "extensification" of agri production, leading to conversion from forestland to agriculture.
- 2. Lower cost of imported agri inputs leads to "intensification". Ambiguous net impact on deforestation as it could lead to higher rents on agri land.
- 3. Lower cost of imported forest-clearing capital. The "cheaper chain saw hypothesis".
- 4. Demand-induced effects. Higher income and population growth may cause more deforestation.


FOREST PRODUCT MARKETS

 Direct demand for forest products from new trade partners may increase deforestation.

INCIDENTAL DEFORESTATION

Local economic development leads to increased demand from deforested land:

- 1. Development of residential frontier
- 2. Increased mining activities

OUTCOME VARIABLES

- High-resolution satellite images for deforestation.
- Compares pixels of foret cover between years and calculates losses over time.
- Most previous studies used FAO data, which is said to be highly inaccurate. Based of countries' reports etc.
- 5 dependent variables (to inform mechanism):
 - 1. deforestation
 - 2. agri area growth
 - 3. agri output
 - 4. forest product output
 - 5. agri yields

TRADE OPENNESS DATA

- Uses the WTO definition of RTAs.
- Dummy variable equal to 1 for country i at year t if RTA "came into force" (enactment).

OTHER DATA

- NB Distinguish variables of interest, control, dependent, explanatory.
- From FAO: agri land area; agri output; forest product output; yields; agri trade
- Sovereign nations only.
- 189 nations
- 2001 to 2012.
- Sample size may vary depending on availability of variables.
- Summary stats taken from online appendix.

Table 1: Summary Statistics

	Mean	Median	SD	Min	Max	No Obs
Baseline Forest Area (km ²)	253433.3	27443.69	884673.9	0	8833904	2268
Forest Loss (km ²)	997.65	52.15	4030.074	0	58995.42	2268
Ag Land Area (km ²)	254231.4	39462.3	668879.2	4	5199150	2256
Annual Ag Output (1000's tons)	83492.52	12970.57	310691.1	.378	3876270	2244
Ag Area Harvested (km ²)	13321.08	2459.401	40480.06	.605	372950.2	2232
Annual Forest Output (1,000's m ³)	2.53e+07	5506250	7.34e+07	0	6.95e+08	2164
Food Exports (1,000s USD)	4514315	427488.5	1.24e+07	0	1.45e+08	2196
Food Imports (1,000s USD)	4612722	806513	1.15e+07	1250	1.10e+08	2208
Tractor Imports	5381.785	624	17587.58	1	247557	1412

EMPIRICAL STRATEGY

(identification strategy) (econometric approach)

MODEL AND ESTIMATION METHOD

$$y_{it} = \delta_{LR-} \mathbf{1} [RTA_{(<-k),it}] + \sum_{\substack{s=-k,\\s\neq-1}}^{k} \delta_s \mathbf{1} [RTA_{s,it}] + \delta_{LR+} \mathbf{1} [RTA_{(>k),it}] + \alpha_i + \gamma_t + \varepsilon_{it},$$

- "we leverage the uncertainty in timing of enactment of RTAs as plausibly exogenous variation in trade policy"
- Event study methodology
- Country and year fixed effects
- Use of dummy variables only
- Yearly leads and lags
- Long term leads and lags
- (about model vs estimation method, see Wooldridge 19.5c – chap 19 on "Carrying out an empirical project")

SUPPOSE: i=NICA, RTA enacted in 2005, A=3: J=SEN, BTA curcted in 2008 2001 2 3 4 RTA; 6 7 8 9 10 11 12 HILL RTA; 7 RTA; 7 10 11 12
$$\begin{split} & M_{NIGA, 2007} = \delta_{2} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2} + \alpha_{NIGA} + \delta_{2010} \\ & M_{NIGA, 2007} = \delta_{-3} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{-3} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA, 2007} = \delta_{2R-} + \alpha_{NIGA} + \delta_{2007} \\ & M_{NIGA,$$
JSEN, 2017 = XSEN + 82007 JSEN, 2010 = Sz + XSEN + 82010 $\left(\delta_{-,} \equiv 0 \right)$

RESULTS

	De	forestation	Ag A	Area Growth
	Coefficient	Cumulative Effect	Coefficient	Cumulative Effect
RTA _{LR-}	018		.0030	
	(.042)		(.0036)	
RTA _{t-3}	.015		0034	
	(.029)		(.0035)	
RTA_{t-2}	007		0013	
	(.029)		(.0020)	
RTA_{t-1}				
RTA _t	.078***	.078***	.0004	.0004
-	(.029)	(.029)	(.0023)	(.0023)
RTA_{t+1}	.056*	.134***	.0050**	.0055*
	(.030)	(.047)	(.0022)	(.0029)
RTA_{t+2}	.076**	.210***	.0032	.0087*
	(.031)	(.060)	(.0025)	(.0046)
RTA _{t+3}	.049*	.258***	0003	.0084
	(.028)	(.073)	(.0021)	(.0053)
RTA_{LR+}	.035	.293***	.0002	.0086
	(.048)	(.091)	(.0028)	(.0061)
Observations	2,268		2,256	
R^2	.009		.004	
Wald (leads)	.561		2.009	
Mean	998	258 ⁺	001	2,137 ⁺
Median	52	13 ⁺	.000	332 ⁺

Table 1. Effects of RTA Enactment on Deforestation and Agricultural Area Growth

INTERPRETATION OF TABLE 1

- NB statistical significance vs economic significance (magnitude)
- yearly v. cumulative
- Interpretation of numbers is often tricky
 - (review table 2.3 in Wooldridge)
- After 3 years since RTA, deforestation is 26% larger compared to no RTA.
- Coefs on ag area growth are not very significant (no significance after 3 years)
- The following comment is not very scientific (objective): "While the 3-year cumulative effect of 0.8 percentage points is not statistically differentiable from zero, it corresponds to roughly 2,137 km2 calculated at the mean agricultural area over the full sample."

MECHANISMS

Table 3. Effects of RTA Enactment: Deforestation

	Dependent Variable: Deforestation								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
RTA cumulative	.230*** (.074)	.220*** (.073)	.219*** (.074)	.218*** (.074)	.190*** (.073)	.214*** (.075)	.218*** (.074)	.230*** (.080)	
Per capita GDP	-1.065 (.894)	703 (.924)	.803 (1.531)	.955 (1.583)	1.823 (1.600)	.518 (1.612)	.955 (1.583)	.725 (1.650)	
(Per capita GDP) ²	.041 (.049)	.018 (.051)	.024 (.051)	.023 (.056)	035 (.057)	.013 (.057)	.023 (.056)	.107* (.056)	
Per capita GDP (lag)	.463 (.300)	.413 (.316)	-1.188 (1.427)	-1.325 (1.494)	-1.206 (1.508)	750 (1.500)	-1.325 (1.494)	-1.967 (1.670)	
Population		441** (.222)	392* (.232)	372 (.241)	230 (.253)	461* (.262)	372 (.241)	.483** (.197)	
GDP growth			-1.624 (1.461)	-1.799 (1.552)	-1.710 (1.572)	-1.262 (1.556)	-1.799 (1.552)	-2.929* (1.700)	
Openness				.086 (.084)	.067 (.082)	.081 (.082)	.086 (.084)	.144 (.090)	
Corruption								.174* (.101)	
Accountability								.197** (.093)	
Rule of law								.030 (.107)	
Regulatory								148 (.098)	
Stability								.055 (.061)	
Country FE Year FE	Y Y	Y Y	Y Y	Y Y	Y	Y	Y	Y Y	
Year × developed FE Year × tropics FE					Y	Y			
Year × exporter FE Observations	2,196	2,196	2,196	2,097	2,097	2,097	Y 2,097	2,084	
R^2	.011	.013	.013	.015	.149	.133	.120	.075	

MECHANISM

- GDP-related controls: effect of RTA is not just through increased demand
- Governance controls: effect of RTA is not driven by changes in governance
 - What about an interaction term? (theory)

	Forest	Output	Ag Harv	est Area	Ag Harve	st Weight
	Coef	Cumul	Coef	Cumul	Coef	Cumul
RTA _{LR-}	.050		.018		.041	
	(.055)		(.017)		(.025)	
RTA_{t-3}	.033		014		006	
	(.035)		(.009)		(.012)	
RTA_{t-2}	052		005		004	
	(.034)		(.009)		(.011)	
RTA_{t-1}	• • •		• • •		• • •	
RTA _t	015	015	004	004	003	003
	(.017)	(.017)	(.008)	(.008)	(.011)	(.011)
RTA_{t+1}	.002	013	004	008	005	008
	(.022)	(.036)	(.009)	(.016)	(.011)	(.018)
RTA_{t+2}	.018	.005	.011	.003	.003	005
	(.020)	(.051)	(.009)	(.023)	(.012)	(.027)
RTA_{t+3}	049	044	.012	.014	.030**	.025
	(.033)	(.058)	(.011)	(.031)	(.013)	(.035)
RTA_{LR+}	102	146	.042**	.056	.045	.070
	(.085)	(.120)	(.020)	(.041)	(.028)	(.050)
Observations	2,033		2,079		2,079	2,200
R^2	.028		.068		.101	
Wald (leads)	3.485		6.637*		6.159	
Mean	26,262	$-1,152^{+}$	140,285	2,017 [‡]	89,228	2,213 [§]
Median	5,690	-250 [§]	26,341	379 [‡]	14,018	348 [§]

Table 4. Effects of RTA Enactment on Production

MECHANISM

- forest output: Effect does not appear to be about forest products
- agricultural expansion: some evidence that it is about agricultural expansion

Table 5. Effects of RTA Enactment: Subsa	mple Analysis

			Developing				
	Deve	Developed		Tropical		Nontropical	
	Def	Ag	Def	Ag	Def	Ag	
RTA _{LR-}	.109	.0077	.074	.0047	348***	.0021	
	(.148)	(.0057)	(.053)	(.0049)	(.102)	(.0048)	
RTA_{t-3}	025	.0046	.116**	0084	101	.0006	
	(.069)	(.0042)	(.048)	(.0061)	(.062)	(.0037)	
RTA_{t-2}	.022	.0037	.024	.0004	038	.0045	
	(.062)	(.0072)	(.039)	(.0023)	(.081)	(.0041)	
RTA_{t-1}	• • •	• • •	• • •	• • •	• • •	• • •	
RTA _t	.094	0034	.114***	0007	026	.0003	
	(.074)	(.0093)	(.041)	(.0021)	(.058)	(.0034)	
ATA_{t+1}	007	0067	.136***	.0074***	07	.0012	
	(.069)	(.0077)	(.043)	(.0027)	(.05)	(.0035)	
RTA_{t+2}	048	.0004	.137***	.0048**	.016	0005	
	(.058)	(.0088)	(.041)	(.0023)	(.061)	(.0026)	
RTA_{t+3}	06	0007	.091**	0018	.017	0037	
	(.064)	(.006)	(.039)	(.0027)	(.053)	(.004)	
RTA_{LR+}	193	.013	.061	0043	.194	.0065	
	(.123)	(.0132)	(.059)	(.0029)	(.144)	(.0045)	
Wald (leads)	.847	4.327	7.021*	2.487	14.67***	1.253	
Mean	1,601	0051	893	.0012	775	0022	
Median	142	0026	73	.0000	7	.0000	

MECHANISM (SUBSAMPLES)

- Main results appear to be driven by developing tropical countries
 - Why not use interaction terms?
 - Maybe it is about governance?

CONCLUSION/DISCUSSION

- Results about agricultural expansion seems robust.
- Role of governance has not been ruled out.