## MAT 2377 (Fall 2016)

## Final Exam Formula Sheet

- Addition Rule: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Conditional probability of $A$ given $B$ :

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Total probability rule:
$P(A)=P(A \cap B)+P\left(A \cap B^{\prime}\right)=P(A \mid B) P(B)+P\left(A \mid B^{\prime}\right) P\left(B^{\prime}\right)$
- Bayes' rule

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+P\left(A \mid B^{\prime}\right) P\left(B^{\prime}\right)}
$$

- Events $A$ and $B$ are independent if $P(A \cap B)=P(A) P(B)$
- Expected value of a discrete random variable $X$ :

$$
\mu=E(X)=\sum_{x} x f(x), \quad \text { where } \quad f(x)=P(X=x)
$$

- Variance of a discrete random variable $X$ :

$$
\sigma^{2}=\operatorname{Var}(X)=\sum_{x}(x-\mu)^{2} f(x)=\sum_{x} x^{2} f(x)-\mu^{2}, \quad \text { where } \quad f(x)=P(X=x)
$$

- Cumulative distribution function of a random variable $X$ : $F(x)=P(X \leq x)$
- If $X$ is a binomial random variable with $n$ trials and probability $p$ of success, then

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

and its mean and variance are respectively $n p$ and $n p(1-p)$.

- If $X$ is a geometric random variable with probability $p$ of success, then

$$
P(X=k)=(1-p)^{k-1} p, \quad k=1,2,3, \ldots
$$

and its mean and variance are respectively $1 / p$ and $(1-p) / p^{2}$.

- If $X$ is a Poisson random variable with mean $\lambda$, then

$$
P(X=k)=e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad k=0,1,2, \ldots
$$

and its mean and variance are both $\lambda$.

- If $X$ has Poisson distribution (with $E[X]=\lambda>5$ ) or a binomial distribution (with $n p>5$ and $n(1-p)>5)$, then $X$ has an approximate normal distribution. A continuity correction should be applied in the approximation.
- If $X$ has an exponential distribution with mean $E[X]=1 / \lambda$. Its p.d.f. is

$$
f(x)=\lambda e^{-\lambda x}, \quad \text { for } x>0,
$$

and its variance is $1 / \lambda^{2}$.

- Standardization: If $X$ is a normal random variable with mean $\mu$ and variance $\sigma^{2}$, then

$$
Z=\frac{X-\mu}{\sigma} \text { has a standard normal distribution }
$$

- Sample mean of the observations $x_{1}, \ldots, x_{n}: \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- Central Limit Theorem: for a random sample $X_{1}, \ldots, X_{n}$ from a population with a mean $\mu$ and a variance $\sigma^{2}$, then

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \text { has approximately a standard normal distribution, when } n \text { is large }
$$

- The number of combinations, subsets of size $r$ that can be selected from a set of $n$ elements, is

$$
C_{r}^{n}=\binom{n}{r}=\frac{n!}{(n-r)!r!} .
$$

- The number of permutations, arrangements of size $r$ that can be selected from a set of $n$ elements, is

$$
P_{r}^{n}=\frac{n!}{(n-r)!}
$$

- For $|x|<1$, we have

$$
\sum_{i=1}^{\infty} i x^{i-1}=(1-x)^{-2}
$$

