Type monoids

The variety of BISs
ISs from partial functions
BISs and tight maps
Biases

The type monoid
From \(D \) to \(\text{Typ} S \)
Typ \(S \) and equidecomposability types
Dobbertin's Theorem
Abelian \(\ell \)-groups

Type monoids and nonstable K-theory
\(\kappa(s) \)
Typ \(S \) \(\rightarrow \) \(V(\kappa(s)) \)

Type monoids of Boolean inverse semigroups

Friedrich Wehrung

LMNO, CNRS UMR 6139 (Caen)
E-mail: friedrich.wehrung01@unicaen.fr
URL: http://www.math.unicaen.fr/~wehrung

June 2016
Basic definitions

Inverse semigroup

Type monoids

- The variety of BISs
- ISs from partial functions
- BISs and tight maps
- Biases

- The type monoid
 From \emptyset to $\text{Typ } S$
 $\text{Typ } S$ and equidecomposability types
 Dobbertin's Theorem
 Abelian ℓ-groups

- Type monoids and nonstable K-theory
 $K(\langle S \rangle)$
 $\text{Typ } S \rightarrow V(K(\langle S \rangle))$
Basic definitions

Inverse semigroup

Semigroup \((S, \cdot)\), where \(\forall x \exists \text{ unique } x^{-1} \text{ (the inverse of } x) \text{ such that } xx^{-1}x = x \text{ and } x^{-1}xx^{-1} = x^{-1}\).
Basic definitions

Inverse semigroup

Semigroup \((S, \cdot)\), where \(\forall x \exists \text{ unique } x^{-1} \text{ (the inverse of } x)\) such that \(xx^{-1}x = x\) and \(x^{-1}xx^{-1} = x^{-1}\).

There are many equivalent definitions, such as:
Inverse semigroup

Semigroup \((S, \cdot)\), where \(\forall x \exists \text{ unique } x^{-1} \) (the inverse of \(x\)) such that \(xx^{-1}x = x\) and \(x^{-1}xx^{-1} = x^{-1}\).

There are many equivalent definitions, such as:
\(\forall x \exists y \ xyx = x\), and all idempotents of \(S\) commute.
Basic definitions

Inverse semigroup

Semigroup \((S, \cdot)\), where \(\forall x \exists\) unique \(x^{-1}\) (the inverse of \(x\)) such that \(xx^{-1}x = x\) and \(x^{-1}xx^{-1} = x^{-1}\).

There are many equivalent definitions, such as:
\(\forall x \exists y \ xyx = x\), and all idempotents of \(S\) commute.

We set \(d(x) = x^{-1}x\) (the domain of \(x\)), \(r(x) = xx^{-1}\) (the range of \(x\)), \(\text{Idp} S = \{x \in S \mid x^2 = x\}\).
Inverse semigroup

Semigroup \((S, \cdot)\), where \(\forall x \ \exists\ \text{unique} \ x^{-1} \ (\text{the inverse of } x)\) such that \(xx^{-1}x = x\) and \(x^{-1}xx^{-1} = x^{-1}\).

There are many equivalent definitions, such as:
\(\forall x \ \exists y \ yxy = x\), and all idempotents of \(S\) commute.
We set \(d(x) = x^{-1}x\) (the domain of \(x\)), \(r(x) = xx^{-1}\) (the range of \(x\)), \(\text{Idp } S = \{x \in S \mid x^2 = x\}\).

Fundamental example (symmetric inverse semigroup)
Inverse semigroup

Semigroup \((S, \cdot)\), where \(\forall x \exists \text{ unique } x^{-1} \) (the inverse of \(x\)) such that \(xx^{-1}x = x\) and \(x^{-1}xx^{-1} = x^{-1}\).

There are many equivalent definitions, such as:
\(\forall x \exists y \ xyx = x\), and all idempotents of \(S\) commute.

We set \(d(x) = x^{-1}x\) (the domain of \(x\)), \(r(x) = xx^{-1}\) (the range of \(x\)), \(\text{Idp } S = \{x \in S \mid x^2 = x\}\).

Fundamental example (symmetric inverse semigroup)

For any set \(\Omega\), denote by \(\mathcal{I}_\Omega\) the semigroup of all bijections \(f : X \to Y\), where \(X, Y \subseteq \Omega\).
Basic definitions

Inverse semigroup

Semigroup \((S, \cdot)\), where \(\forall x \exists \text{ unique } x^{-1} \text{ (the inverse of } x)\) such that \(x x^{-1} x = x\) and \(x^{-1} x x^{-1} = x^{-1}\).

There are many equivalent definitions, such as:
\(\forall x \exists y \ xyx = x\), and all idempotents of \(S\) commute.

We set \(d(x) = x^{-1} x \text{ (the domain of } x)\), \(r(x) = xx^{-1} \text{ (the range of } x)\), \(\text{Idp } S = \{x \in S \mid x^2 = x\}\).

Fundamental example (symmetric inverse semigroup)

For any set \(\Omega\), denote by \(\widetilde{J}_\Omega\) the semigroup of all bijections \(f : X \to Y\), where \(X, Y \subseteq \Omega\) (partial bijections on \(\Omega\)).
Inverse semigroup

Semigroup \((S, \cdot)\), where \(\forall x \ \exists \text{ unique } x^{-1} \text{ (the inverse of } x) \text{ such that } xx^{-1}x = x \text{ and } x^{-1}xx^{-1} = x^{-1}\).

There are many equivalent definitions, such as:
\(\forall x \ \exists y \ xyx = x\), and all idempotents of \(S\) commute.
We set \(d(x) = x^{-1}x\) (the domain of \(x\)), \(r(x) = xx^{-1}\) (the range of \(x\)), \(\text{Idp } S = \{x \in S \mid x^2 = x\}\).

Fundamental example (symmetric inverse semigroup)

For any set \(\Omega\), denote by \(I_\Omega\) the semigroup of all bijections \(f : X \to Y\), where \(X, Y \subseteq \Omega\) (partial bijections on \(\Omega\)).

Composition of partial functions defined whenever possible:
Inverse semigroup

Semigroup \((S, \cdot)\), where \(\forall x \exists \text{ unique } x^{-1} \text{ (the inverse of } x)\) such that \(xx^{-1}x = x\) and \(x^{-1}xx^{-1} = x^{-1}\).

There are many equivalent definitions, such as:
\(\forall x \exists y \ xyx = x\), and all idempotents of \(S\) commute.
We set \(d(x) = x^{-1}x\) (the domain of \(x\)), \(r(x) = xx^{-1}\) (the range of \(x\)), \(\text{Idp } S = \{x \in S \mid x^2 = x\}\).

Fundamental example (symmetric inverse semigroup)

For any set \(\Omega\), denote by \(\mathcal{I}_\Omega\) the semigroup of all bijections \(f : X \to Y\), where \(X, Y \subseteq \Omega\) (partial bijections on \(\Omega\)).

Composition of partial functions defined whenever possible:
\(\text{dom}(g \circ f) = \{x \in \text{dom}(f) \mid f(x) \in \text{dom}(g)\}\).
Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some \mathcal{I}_Ω. Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set. Example constructed from a group action:

If a group G acts on a set Ω, consider all partial bijections $f: X \to Y$ in \mathcal{I}_Ω that are piecewise in G: that is, \exists decompositions $X = \bigcup_{i=1}^n X_i$, $Y = \bigcup_{i=1}^n Y_i$, each $g_i \in G$ and $g_i X_i = Y_i$, and $f(x) = g_i x$ whenever $x \in X_i$.

$\text{Inv}(\mathcal{I}_\Omega \hookrightarrow G) = \{ f \in \mathcal{I}_\Omega | f \text{ is piecewise in } G \}$ is an inverse semigroup.

Idempotents of $\text{Inv}(\mathcal{I}_\Omega \hookrightarrow G)$: they are the identities on all subsets of Ω. They form a Boolean lattice.
Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some \(\mathcal{I}_\Omega \).
Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some \(\tilde{I}_\Omega \).

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.
Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some \(\mathcal{I}_\Omega \).

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Example constructed from a group action
Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some \mathcal{J}_Ω.

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections $f : X \rightarrow Y$ in \mathcal{J}_Ω that are piecewise in G:
Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some \mathcal{I}_Ω.

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections $f : X \to Y$ in \mathcal{I}_Ω that are piecewise in G: that is, \exists decompositions $X = \bigcup_{i=1}^{n} X_i$, $Y = \bigcup_{i=1}^{n} Y_i$, each $g_i \in G$ and $g_i X_i = Y_i$, and
Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some \mathcal{J}_Ω.

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections $f : X \rightarrow Y$ in \mathcal{J}_Ω that are piecewise in G: that is, \exists decompositions $X = \bigcup_{i=1}^n X_i$, $Y = \bigcup_{i=1}^n Y_i$, each $g_i \in G$ and $g_iX_i = Y_i$, and

$$f(x) = g_i x \text{ whenever } x \in X_i.$$
Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some \mathcal{I}_Ω.

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections $f : X \to Y$ in \mathcal{I}_Ω that are piecewise in G: that is, \exists decompositions $X = \bigcup_{i=1}^n X_i$, $Y = \bigcup_{i=1}^n Y_i$, each $g_i \in G$ and $g_i X_i = Y_i$, and

$$f(x) = g_i x$$

whenever $x \in X_i$.

$\text{Inv}(\Omega, G) = \{ f \in \mathcal{I}_\Omega \mid f \text{ is piecewise in } G \}$ is an inverse semigroup.
Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some \(\mathcal{I}_\Omega \).

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Example constructed from a group action

If a group \(G \) acts on a set \(\Omega \), consider all partial bijections \(f : X \rightarrow Y \) in \(\mathcal{I}_\Omega \) that are piecewise in \(G \): that is, \(\exists \) decompositions \(X = \bigcup_{i=1}^{n} X_i, Y = \bigcup_{i=1}^{n} Y_i \), each \(g_i \in G \) and \(g_iX_i = Y_i \), and

\[
f(x) = g_i x \text{ whenever } x \in X_i.
\]

\(\text{Inv}(\Omega, G) = \{ f \in \mathcal{I}_\Omega \mid f \text{ is piecewise in } G \} \) is an inverse semigroup.

Idempotents of \(\text{Inv}(\Omega, G) \): they are the identities on all subsets of \(\Omega \). They form a Boolean lattice.
Example from a group action on a generalized Boolean algebra

Extension of previous example
Example from a group action on a generalized Boolean algebra

Extension of previous example

Now X, Y, X_i, Y_i are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω.

We require $g_B = B \quad \forall g \in G$, that is, G acts on B by automorphisms. The structure thus obtained, $\text{Inv}(\mathcal{B} \hookrightarrow G)$, depends only of the isomorphism type of the action of G on B (not of the given representation). It is an inverse semigroup.

Idempotents of $\text{Inv}(\mathcal{B} \hookrightarrow G)$: they are the identity functions id_X, where $X \in B$.

What kind of inverse semigroup is this?

Zero element: the function $0 \in \text{Inv}(\mathcal{B} \hookrightarrow G)$ with empty domain.

$f \circ 0 = 0 \circ f = 0$, $\forall f \in \text{Inv}(\mathcal{B} \hookrightarrow G)$.

Orthogonality: $f \perp g$ if $\text{dom}(f) \cap \text{dom}(g) = \text{rng}(f) \cap \text{rng}(g) = \emptyset$.

Can be expressed abstractly: $f \perp g$ iff $f \circ g^{-1} = f^{-1} \circ g = 0$.

Then one can form the orthogonal sum $f \oplus g$: $(f \oplus g)(x) = f(x)$ if $x \in \text{dom}(f)$, $g(x)$ if $x \in \text{dom}(g)$.
Example from a group action on a generalized Boolean algebra

Extension of previous example

Now X, Y, X_i, Y_i are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g\mathcal{B} = \mathcal{B}$ for all $g \in G$, that is, G acts on \mathcal{B} by automorphisms.
Example from a group action on a generalized Boolean algebra

<table>
<thead>
<tr>
<th>Extension of previous example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Now X, Y, X_i, Y_i are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g\mathcal{B} = \mathcal{B}$ for all $g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\text{Inv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation).</td>
</tr>
</tbody>
</table>
Example from a group action on a generalized Boolean algebra

Extension of previous example

Now X, Y, X_i, Y_i are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g\mathcal{B} = \mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\text{Inv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.
Example from a group action on a generalized Boolean algebra

Extension of previous example

Now X, Y, X_i, Y_i are all restricted to belong to some generalized Boolean sublattice B of the powerset of Ω. We require $gB = B$ $\forall g \in G$, that is, G acts on B by automorphisms. The structure thus obtained, $\text{Inv}(B, G)$, depends only of the isomorphism type of the action of G on B (not of the given representation). It is an inverse semigroup.

Idempotents of $\text{Inv}(B, G)$: they are the identity functions id_X, where $X \in B$.

Example from a group action on a generalized Boolean algebra

Extension of previous example

Now X, Y, X_i, Y_i are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g \mathcal{B} = \mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\text{Inv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\text{Inv}(\mathcal{B}, G)$: they are the identity functions id_X, where $X \in \mathcal{B}$.

What kind of inverse semigroup is this?
Example from a group action on a generalized Boolean algebra

Extension of previous example

Now X, Y, X_i, Y_i are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g\mathcal{B} = \mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\text{Inv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\text{Inv}(\mathcal{B}, G)$: they are the identity functions id_X, where $X \in \mathcal{B}$.

What kind of inverse semigroup is this?

Zero element: the function $0 \in \text{Inv}(\mathcal{B}, G)$ with empty domain.
Example from a group action on a generalized Boolean algebra

Extension of previous example

Now X, Y, X_i, Y_i are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g\mathcal{B} = \mathcal{B}$ for all $g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\text{Inv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\text{Inv}(\mathcal{B}, G)$: they are the identity functions id_X, where $X \in \mathcal{B}$.

What kind of inverse semigroup is this?

Zero element: the function $0 \in \text{Inv}(\mathcal{B}, G)$ with empty domain. $f \circ 0 = 0 \circ f = 0$, $\forall f \in \text{Inv}(\mathcal{B}, G)$.
Example from a group action on a generalized Boolean algebra

Extension of previous example

Now X, Y, X_i, Y_i are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g\mathcal{B} = \mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\text{Inv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\text{Inv}(\mathcal{B}, G)$: they are the identity functions id_X, where $X \in \mathcal{B}$.

What kind of inverse semigroup is this?

Zero element: the function $0 \in \text{Inv}(\mathcal{B}, G)$ with empty domain. $f \circ 0 = 0 \circ f = 0$, $\forall f \in \text{Inv}(\mathcal{B}, G)$.

Orthogonality: $f \perp g$ if $\text{dom}(f) \cap \text{dom}(g) = \text{rng}(f) \cap \text{rng}(g) = \emptyset$.

Can be expressed abstractly: $f \perp g$ iff $f \circ g^{-1} = f^{-1} \circ g = 0$. Then one can form the orthogonal sum $f \oplus g$: $(f \oplus g)(x) = f(x)$ if $x \in \text{dom}(f)$, $g(x)$ if $x \in \text{dom}(g)$.

Example from a group action on a generalized Boolean algebra

Extension of previous example

Now X, Y, X_i, Y_i are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g\mathcal{B} = \mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\text{Inv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\text{Inv}(\mathcal{B}, G)$: they are the identity functions id_X, where $X \in \mathcal{B}$.

What kind of inverse semigroup is this?

Zero element: the function $0 \in \text{Inv}(\mathcal{B}, G)$ with empty domain.

$f \circ 0 = 0 \circ f = 0$, $\forall f \in \text{Inv}(\mathcal{B}, G)$.

Orthogonality: $f \perp g$ if $\text{dom}(f) \cap \text{dom}(g) = \text{rng}(f) \cap \text{rng}(g) = \emptyset$.

Can be expressed abstractly: $f \perp g$ iff $f \circ g^{-1} = f^{-1} \circ g = 0$.
Example from a group action on a generalized Boolean algebra

Extension of previous example

Now X, Y, X_i, Y_i are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g\mathcal{B} = \mathcal{B}$ for all $g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\text{Inv}(\mathcal{B}, G)$, depends only on the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\text{Inv}(\mathcal{B}, G)$: they are the identity functions id_X, where $X \in \mathcal{B}$.

What kind of inverse semigroup is this?

Zero element: the function $0 \in \text{Inv}(\mathcal{B}, G)$ with empty domain.

$$f \circ 0 = 0 \circ f = 0, \ \forall f \in \text{Inv}(\mathcal{B}, G).$$

Orthogonality: $f \perp g$ if $\text{dom}(f) \cap \text{dom}(g) = \text{rng}(f) \cap \text{rng}(g) = \emptyset$.

Can be expressed abstractly: $f \perp g$ iff $f \circ g^{-1} = f^{-1} \circ g = 0$.

Then one can form the orthogonal sum $f \oplus g$:
Example from a group action on a generalized Boolean algebra

Extension of previous example

Now X, Y, X_i, Y_i are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g\mathcal{B} = \mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\text{Inv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\text{Inv}(\mathcal{B}, G)$: they are the identity functions id_X, where $X \in \mathcal{B}$.

What kind of inverse semigroup is this?

Zero element: the function $0 \in \text{Inv}(\mathcal{B}, G)$ with empty domain.

$f \circ 0 = 0 \circ f = 0$, $\forall f \in \text{Inv}(\mathcal{B}, G)$.

Orthogonality: $f \perp g$ if $\text{dom}(f) \cap \text{dom}(g) = \text{rng}(f) \cap \text{rng}(g) = \emptyset$.

Can be expressed abstractly: $f \perp g$ iff $f \circ g^{-1} = f^{-1} \circ g = 0$.

Then one can form the orthogonal sum $f \oplus g$: $(f \oplus g)(x) = f(x)$ if $x \in \text{dom}(f)$, $g(x)$ if $x \in \text{dom}(g)$.
Boolean inverse semigroups

- The variety of BISs
- ISs from partial functions
- BISs and tight maps
- Biases
- The type monoid
- From \(\emptyset \) to Typ \(S \)
- Typ \(S \) and equidecomposability types
- Dobbertin's Theorem
- Abelian \(\ell \)-groups
- Type monoids and nonstable K-theory
 - \(K(S) \)
 - Typ \(S \) → \(V(K(S)) \)

Canonical ordering on an inverse semigroup:

- \(x \leq y \) iff (\(\exists \) idempotent \(e \)) \(x = ye \) (resp., \(x = ey \)),
- \(x = d(x) \),
- \(x = r(x)y \).

For \(S = \text{Inv}(B \hookrightarrow G) \), \(f \leq g \) iff \(g \) extends \(f \).

The latter condition, on \(\exists x \oplus y \), is not redundant (example with \(\text{Idp} S \) the 2-atom Boolean algebra).

Large class of Boolean inverse semigroups: all \(\text{Inv}(B \hookrightarrow G) \).
Boolean inverse semigroups

Canonical ordering on an inverse semigroup:

\[x \leq y \text{ iff (\exists idempotent } e) \ x = ye \text{ (resp., } x = ey) \text{, iff } x = y \ d(x), \text{ iff } x = r(x)y. \]
Boolean inverse semigroups

Canonical ordering on an inverse semigroup:

\[x \leq y \text{ iff } (\exists \text{ idempotent } e) \ x = ye \text{ (resp., } x = ey), \text{ iff } x = y d(x), \text{ iff } x = r(x) y. \]

For \(S = \text{Inv}(\mathcal{B}, G) \), \(f \leq g \) iff \(g \) extends \(f \).
Boolean inverse semigroups

Canonical ordering on an inverse semigroup:

\[x \leq y \text{ iff } (\exists \text{ idempotent } e) \ x = ye \text{ (resp., } x = ey), \text{ iff } x = y \; d(x), \text{ iff } x = r(x)y. \]

For \(S = \text{Inv}(B, G) \), \(f \leq g \) iff \(g \) extends \(f \).

Boolean inverse semigroups
Boolean inverse semigroups

Canonical ordering on an inverse semigroup:
\[x \leq y \text{ iff } (\exists \text{ idempotent } e) \quad x = ye \text{ (resp., } x = ey), \text{ iff } x = y \ d(x), \text{ iff } x = r(x)y. \]

For \(S = \text{Inv}(B, G) \), \(f \leq g \text{ iff } g \text{ extends } f \).

Boolean inverse semigroups

Inverse semigroup \(S \) with zero \((x0 = 0x = 0 \ \forall x) \) such that \(\text{Idp} \ S \) is a generalized Boolean algebra, and
Boolean inverse semigroups

Canonical ordering on an inverse semigroup:

\[x \leq y \text{ iff } (\exists \text{ idempotent } e) \ x = ye \ (\text{resp., } x = ey), \text{ iff } x = y \ d(x), \text{ iff } x = r(x)y. \]

For \(S = \text{Inv}(B, G) \), \(f \leq g \text{ iff } g \text{ extends } f \).

Boolean inverse semigroups

Inverse semigroup \(S \) with zero \((x0 = 0x = 0 \ \forall x) \) such that \(\text{Idp} \ S \) is a generalized Boolean algebra, and \(\forall x, y \) with \(x \perp y \), the supremum \(x \oplus y \) of \(\{x, y\} \), with respect to \(\leq \), exists.
Boolean inverse semigroups

Canonical ordering on an inverse semigroup:

\[x \leq y \text{ iff } (\exists \text{idempotent } e) \ x = ye \text{ (resp., } x = ey), \text{ iff } x = y d(x), \text{ iff } x = r(x)y. \]

For \(S = \text{Inv}(B, G) \), \(f \leq g \) iff \(g \) extends \(f \).

Boolean inverse semigroups

Inverse semigroup \(S \) with zero \((x0 = 0x = 0 \ \forall x)\) such that \(\text{Idp } S \) is a generalized Boolean algebra, and \(\forall x, y \) with \(x \perp y \), the supremum \(x \oplus y \) of \(\{x, y\} \), with respect to \(\leq \), exists.

The latter condition, on \(\exists x \oplus y \), is not redundant (example with \(\text{Idp } S \) the 2-atom Boolean algebra).
Boolean inverse semigroups

Canonical ordering on an inverse semigroup:

\[x \leq y \text{ iff } (\exists \text{ idempotent } e) \ x = ye \text{ (resp., } x = ey) \text{, iff } x = y \ d(x), \text{ iff } x = r(x)y. \]

For \(S = \text{Inv}(\mathcal{B}, G) \), \(f \leq g \) iff \(g \) extends \(f \).

Boolean inverse semigroups

Inverse semigroup \(S \) with zero \(x0 = 0x = 0 \ \forall x \) such that \(\text{Idp} \ S \) is a generalized Boolean algebra, and \(\forall x, y \) with \(x \perp y \), the supremum \(x \oplus y \) of \(\{x, y\} \), with respect to \(\leq \), exists.

The latter condition, on \(\exists x \oplus y \), is not redundant (example with \(\text{Idp} \ S \) the 2-atom Boolean algebra).

Large class of Boolean inverse semigroups: all \(\text{Inv}(\mathcal{B}, G) \).
Distributivity of multiplication and meet on joins

Proposition (folklore).

Let \(S \) be a Boolean inverse semigroup and let \(a \preceq b_1 \preceq \ldots \preceq b_n \in S \).

1. If \(\bigvee_{i=1}^n b_i \) exists, then \(\bigvee_{i=1}^n (a b_i) \) exists and equals \(\bigvee_{i=1}^n b_i a \).

2. If \(\bigvee_{i=1}^n b_i \) exists, then \(\bigwedge_{i=1}^n (a b_i) \) exists iff each \(a \wedge b_i \) exists, and then
 \[\bigvee_{i=1}^n (a b_i) = a \bigwedge_{i=1}^n b_i. \]

Note: for a Boolean inverse semigroup \(S \) and \(a \preceq b \in S \), \(a \wedge b \) may not exist. Those \(S \) in which \(a \wedge b \) always exists are called inverse meet-semigroups.
Proposition (folklore).

Let S be a Boolean inverse semigroup and let $a, b_1, \ldots, b_n \in S$.

Let S be a Boolean inverse semigroup and let $a, b_1, \ldots, b_n \in S$.

Note: for a Boolean inverse semigroup S and $a \hookrightarrow b \in S$, $a \land b$ may not exist. Those S in which $a \land b$ always exists are called inverse meet-semigroups.
Proposition (folklore).

Let S be a Boolean inverse semigroup and let $a, b_1, \ldots, b_n \in S$.

1. $\bigvee_{i=1}^{n} b_i$ exists iff the b_i are pairwise compatible, that is, each $b_i^{-1}b_j$ and each $b_ib_j^{-1}$ is idempotent.
Proposition (folklore).

Let S be a Boolean inverse semigroup and let $a, b_1, \ldots, b_n \in S$.

1. $\bigvee_{i=1}^{n} b_i$ exists iff the b_i are pairwise compatible, that is, each $b_i^{-1} b_j$ and each $b_i b_j^{-1}$ is idempotent.

2. If $\bigvee_{i=1}^{n} b_i$ exists, then $\bigvee_{i=1}^{n} (a b_i)$ and $\bigvee_{i=1}^{n} (b_i a)$ both exist, $\bigvee_{i=1}^{n} (a b_i) = a \bigvee_{i=1}^{n} b_i$, and $\bigvee_{i=1}^{n} (b_i a) = \left(\bigvee_{i=1}^{n} b_i \right) a$.

Note: for a Boolean inverse semigroup S and $a \hookrightarrow b \in S$, $a \land b$ may not exist. Those S in which $a \land b$ always exists are called inverse meet-semigroups.
Distributivity of multiplication and meet on joins

Proposition (folklore).

Let S be a Boolean inverse semigroup and let $a, b_1, \ldots, b_n \in S$.

1. $\bigvee_{i=1}^n b_i$ exists iff the b_i are pairwise compatible, that is, each $b_i^{-1} b_j$ and each $b_i b_j^{-1}$ is idempotent.

2. If $\bigvee_{i=1}^n b_i$ exists, then $\bigvee_{i=1}^n (ab_i)$ and $\bigvee_{i=1}^n (b_i a)$ both exist, $\bigvee_{i=1}^n (ab_i) = a \bigvee_{i=1}^n b_i$, and $\bigvee_{i=1}^n (b_i a) = \left(\bigvee_{i=1}^n b_i \right) a$.

3. If $\bigvee_{i=1}^n b_i$ exists, then $a \wedge \bigvee_{i=1}^n b_i$ exists iff each $a \wedge b_i$ exists, and then $\bigvee_{i=1}^n (a \wedge b_i) = a \wedge \bigvee_{i=1}^n b_i$.
Distributivity of multiplication and meet on joins

Proposition (folklore).

Let S be a Boolean inverse semigroup and let $a, b_1, \ldots, b_n \in S$.

1. $\bigvee_{i=1}^{n} b_i$ exists iff the b_i are pairwise compatible, that is, each $b_i^{-1}b_j$ and each $b_ib_j^{-1}$ is idempotent.

2. If $\bigvee_{i=1}^{n} b_i$ exists, then $\bigvee_{i=1}^{n} (ab_i)$ and $\bigvee_{i=1}^{n} (b_ia)$ both exist, $\bigvee_{i=1}^{n} (ab_i) = a \bigvee_{i=1}^{n} b_i$, and $\bigvee_{i=1}^{n} (b_ia) = \left(\bigvee_{i=1}^{n} b_i \right) a$.

3. If $\bigvee_{i=1}^{n} b_i$ exists, then $a \land \bigvee_{i=1}^{n} b_i$ exists iff each $a \land b_i$ exists, and then $\bigvee_{i=1}^{n} (a \land b_i) = a \land \bigvee_{i=1}^{n} b_i$.

Note: for a Boolean inverse semigroup S and $a, b \in S$, $a \land b$ may not exist.
Distributivity of multiplication and meet on joins

Proposition (folklore).

Let S be a Boolean inverse semigroup and let $a, b_1, \ldots, b_n \in S$.

1. $\bigvee_{i=1}^n b_i$ exists iff the b_i are pairwise compatible, that is, each $b_i^{-1}b_j$ and each $b_ib_j^{-1}$ is idempotent.

2. If $\bigvee_{i=1}^n b_i$ exists, then $\bigvee_{i=1}^n (ab_i)$ and $\bigvee_{i=1}^n (b_ia)$ both exist, $\bigvee_{i=1}^n (ab_i) = a \bigvee_{i=1}^n b_i$, and $\bigvee_{i=1}^n (b_ia) = \left(\bigvee_{i=1}^n b_i \right) a$.

3. If $\bigvee_{i=1}^n b_i$ exists, then $a \land \bigvee_{i=1}^n b_i$ exists iff each $a \land b_i$ exists, and then $\bigvee_{i=1}^n (a \land b_i) = a \land \bigvee_{i=1}^n b_i$.

Note: for a Boolean inverse semigroup S and $a, b \in S$, $a \land b$ may not exist.
Those S in which $a \land b$ always exists are called inverse meet-semigroups.
Tight homomorphisms

A relevant concept of morphism, for Boolean inverse semigroups, is the following.
A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Tight maps

A semigroup homomorphism $f: S \to T$, between Boolean inverse semigroups, is tight if $x \perp_S y$ implies that $f(x) \perp_T f(y)$ and $f(x \oplus y) = f(x) \oplus f(y)$. (In particular, $f(0_S) = 0_T$.)

Annoying fact: \oplus is only a partial operation.

Derived (full) operations:

- $x \cdot y = (r(x) \cdot r(y)) x (d(x) \cdot d(y))$ (skew difference);
- $x \cdot y = (x \cdot y) \oplus y$ (skew addition).

Both $x \cdot y$ and $x \cdot y$ are always defined.
Tight homomorphisms

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Tight maps

A semigroup homomorphism $f: S \rightarrow T$, between Boolean inverse semigroups, is tight if $x \perp_S y$ implies that $f(x) \perp_T f(y)$ and $f(x \oplus y) = f(x) \oplus f(y)$.

(In particular, $f(0_S) = 0_T$.)

Annoying fact: \oplus is only a partial operation.

Derived (full) operations:

$x \cdot y = (r(x) \cdot r(y)) x (d(x) \cdot d(y))$ (skew difference);

$x \cdot y = (x \cdot y) \oplus y$ (skew addition).

Both $x \cdot y$ and $x \cdot y$ are always defined.
A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Tight maps

A semigroup homomorphism \(f : S \to T \), between Boolean inverse semigroups, is **tight** if \(x \perp_S y \) implies that \(f(x) \perp_T f(y) \) and \(f(x \oplus y) = f(x) \oplus f(y) \). (In particular, \(f(0_S) = 0_T \).)
Tight homomorphisms

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Tight maps

A semigroup homomorphism $f : S \to T$, between Boolean inverse semigroups, is tight if $x \perp_S y$ implies that $f(x) \perp_T f(y)$ and $f(x \oplus y) = f(x) \oplus f(y)$. (In particular, $f(0_S) = 0_T$.)

Annoying fact: \oplus is only a partial operation.
Tight homomorphisms

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Tight maps

A semigroup homomorphism $f : S \rightarrow T$, between Boolean inverse semigroups, is **tight** if $x \perp_S y$ implies that $f(x) \perp_T f(y)$ and $f(x \oplus y) = f(x) \oplus f(y)$. (In particular, $f(0_S) = 0_T$.)

Annoying fact: \oplus is only a **partial** operation.

Derived (full) operations:

\[
\begin{align*}
\times \ominus y &= (r(x) \setminus r(y)) \times (d(x) \setminus d(y)) \quad (\text{skew difference}); \\
\times \nabla y &= (\times \ominus y) \oplus y \quad (\text{skew addition}).
\end{align*}
\]
Tight homomorphisms

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Tight maps

A semigroup homomorphism \(f : S \to T \), between Boolean inverse semigroups, is \textit{tight} if \(x \perp_S y \) implies that \(f(x) \perp_T f(y) \) and \(f(x \oplus y) = f(x) \oplus f(y) \). (In particular, \(f(0_S) = 0_T \).)

Annoying fact: \(\oplus \) is only a \textit{partial} operation.

Derived (full) operations:

\[
\begin{align*}
x \ominus y &= (r(x) \setminus r(y)) \cdot (d(x) \setminus d(y)) \quad \text{(skew difference);} \\
x \nabla y &= (x \ominus y) \oplus y \quad \text{(skew addition).}
\end{align*}
\]

Both \(x \ominus y \) and \(x \nabla y \) are always defined.
The variety of all biases

- The structures \((S, \cdot, 0, \oslash, \sqcap)\) can be axiomatized,
The variety of all biases

- The structures \((S, \cdot, 0, \otimes, \nabla)\) can be axiomatized, by finitely many identities (e.g., \(x \otimes y = (x \nabla y)(x \otimes y)^{-1}(x \otimes y)\)).
- Those identities define the variety of all biases.
The variety of all biases

- The structures \((S, \cdot, 0, \ominus, \vee)\) can be axiomatized, by finitely many identities (e.g., \(x \ominus y = (x \vee y)(x \ominus y)^{-1}(x \ominus y)\)).
- Those identities define the variety of all biases.
- \(\text{Biases}(\cdot, 0, \ominus, \vee) \Rightarrow \text{Boolean inverse semigroups}(\cdot, 0, \oplus)\).
The variety of all biases

- The structures \((S, \cdot, 0, \otimes, \nabla)\) can be axiomatized, by finitely many identities (e.g., \(x \otimes y = (x \nabla y)(x \otimes y)^{-1}(x \otimes y)\)).
- Those identities define the variety of all biases.
- \(\text{Biases}(\cdot, 0, \otimes, \nabla) \equiv \text{Boolean inverse semigroups } (\cdot, 0, \oplus)\).
- For Boolean inverse semigroups \(S\) and \(T\), a map \(f : S \to T\) is a homomorphism of biases iff it is tight.
The variety of all biases

- The structures \((S, \cdot, 0, \odot, \triangledown)\) can be axiomatized, by finitely many identities (e.g., \(x \odot y = (x \triangledown y)(x \odot y)^{-1}(x \odot y)\)).
- Those identities define the variety of all biases.
- Biases\((\cdot, 0, \odot, \triangledown)\) \(\iff\) Boolean inverse semigroups \((\cdot, 0, \oplus)\).
- For Boolean inverse semigroups \(S\) and \(T\), a map \(f: S \to T\) is a homomorphism of biases iff it is tight.
- A subset \(S\) in a BIS \(T\) is a sub-bias iff it is a subsemigroup, closed under finite \(\oplus\), and closed under \((x, y) \mapsto x \setminus y\) on \(\text{Idp } S\).
The variety of all biases

- The structures \((S, \cdot, 0, \otimes, \triangledown)\) can be axiomatized, by finitely many identities (e.g., \(x \otimes y = (x \triangledown y)(x \otimes y)^{-1}(x \otimes y)\)).
- Those identities define the variety of all biases.
- Biases\((\cdot, 0, \otimes, \triangledown)\) ⇔ Boolean inverse semigroups \((\cdot, 0, \oplus)\).
- For Boolean inverse semigroups \(S\) and \(T\), a map \(f : S \to T\) is a homomorphism of biases iff it is tight.
- A subset \(S\) in a BIS \(T\) is a sub-bias iff it is a subsemigroup, closed under finite \(\oplus\), and closed under \((x, y) \mapsto x \triangleleft y\) on \(\text{ldp } S\).
- The following term is a Mal’cev term for the variety of all biases:

\[
m(x, y, z) = \left(x (d(x) \otimes d(y)) \triangledown xy^{-1} z \right) \triangledown (r(z) \otimes r(y)) z.
\]
The variety of all biases

- The structures \((S, \cdot, 0, \otimes, \triangledown)\) can be axiomatized, by finitely many identities (e.g., \(x \otimes y = (x \triangledown y)(x \otimes y)^{-1}(x \otimes y)\)).
- Those identities define the variety of all biases.
- Biases\((\cdot, 0, \otimes, \triangledown)\) \(\iff\) Boolean inverse semigroups \((\cdot, 0, \oplus)\).
- For Boolean inverse semigroups \(S\) and \(T\), a map \(f : S \to T\) is a homomorphism of biases \(\iff\) it is tight.
- A subset \(S\) in a BIS \(T\) is a sub-bias \(\iff\) it is a subsemigroup, closed under finite \(\oplus\), and closed under \((x, y) \mapsto x \triangledown y\) on \(\text{Idp} S\).
- The following term is a Mal’cev term for the variety of all biases:

\[
m(x, y, z) = \left(x(d(x) \otimes d(y)) \triangledown xy^{-1}z\right) \triangledown (r(z) \otimes r(y))z.
\]
- Therefore, the variety of all biases is congruence-permutable. (Note: it is not congruence-distributive.)
The variety of all biases

- The structures \((S, \cdot, 0, \odot, \triangledown)\) can be axiomatized, by finitely many identities (e.g., \(x \odot y = (x \triangledown y)(x \odot y)^{-1}(x \odot y)\)).
- Those identities define the variety of all biases.
- Biases\((\cdot, 0, \odot, \triangledown)\) \(\iff\) Boolean inverse semigroups \((\cdot, 0, \oplus)\).
- For Boolean inverse semigroups \(S\) and \(T\), a map \(f : S \to T\) is a homomorphism of biases \(\iff\) it is tight.
- A subset \(S\) in a BIS \(T\) is a sub-bias \(\iff\) it is a subsemigroup, closed under finite \(\oplus\), and closed under \((x, y) \mapsto x \triangleleft y\) on Idp \(S\).
- The following term is a Mal’cev term for the variety of all biases:

\[
m(x, y, z) = \left(x(d(x) \odot d(y)) \triangledown xy^{-1}z \right) \triangledown (r(z) \odot r(y))z.
\]

- Therefore, the variety of all biases is congruence-permutable. (Note: it is not congruence-distributive.)
- Hence, Boolean inverse semigroups are much closer to rings than to semigroups.
A Cayley-type theorem for BISs

Proposition
A Cayley-type theorem for BISs

Proposition

Every Boolean inverse semigroup has a tight embedding into some \mathcal{I}_Ω. The embedding preserves all existing finite meets.
A Cayley-type theorem for BISs

Proposition

Every Boolean inverse semigroup has a tight embedding into some \mathcal{J}_Ω. The embedding preserves all existing finite meets.

- The Ω in this representation, denoted by $G_P(S)$ in Lawson and Lenz (2013), is the prime spectrum of S.
A Cayley-type theorem for BISs

Proposition

Every Boolean inverse semigroup has a tight embedding into some \mathcal{I}_Ω. The embedding preserves all existing finite meets.

- The Ω in this representation, denoted by $G_P(S)$ in Lawson and Lenz (2013), is the **prime spectrum** of S.
- The result above is contained in a duality theory worked out by Lawson and Lenz (2013).
A Cayley-type theorem for BISs

Proposition

Every Boolean inverse semigroup has a tight embedding into some I_Ω. The embedding preserves all existing finite meets.

- The Ω in this representation, denoted by $G_P(S)$ in Lawson and Lenz (2013), is the prime spectrum of S.
- The result above is contained in a duality theory worked out by Lawson and Lenz (2013).
- The set-theoretical content of the result above is the Boolean prime ideal Theorem.
A Cayley-type theorem for BISs

Proposition

Every Boolean inverse semigroup has a tight embedding into some I_Ω. The embedding preserves all existing finite meets.

- The Ω in this representation, denoted by $G_P(S)$ in Lawson and Lenz (2013), is the prime spectrum of S.
- The result above is contained in a duality theory worked out by Lawson and Lenz (2013).
- The set-theoretical content of the result above is the Boolean prime ideal Theorem.
- The representation above is called the regular representation of S.
On any inverse semigroup, we set
Green’s relation D

- On any inverse semigroup, we set
 - $x \mathcal{L} y \iff d(x) = d(y)$, $x \mathcal{R} y \iff r(x) = r(y)$, and $D = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$.
Green’s relation \(\mathcal{D} \)

- On any inverse semigroup, we set

 \[x \mathcal{L} y \iff d(x) = d(y), \quad x \mathcal{R} y \iff r(x) = r(y), \text{ and} \]

 \[\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}. \]

- For idempotent \(a \) and \(b \), \(a \mathcal{D} b \) iff \((\exists x) \ (a = d(x) \text{ and } b = r(x)) \).
Green’s relation \mathscr{D}

- On any inverse semigroup, we set
 - $x \mathcal{L} y \iff d(x) = d(y)$, $x \mathcal{R} y \iff r(x) = r(y)$, and
 - $\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$.

- For idempotent a and b, $a \mathcal{D} b$ iff $(\exists x) \ (a = d(x) \text{ and } b = r(x))$.

- For a Boolean inverse semigroup S, the quotient $\text{Int } S = S/\mathcal{D}$ (the dimension interval of S) can be endowed with a partial addition, given by
Green’s relation \mathcal{D}

- On any inverse semigroup, we set
- $x \mathcal{L} y \iff \mathcal{d}(x) = \mathcal{d}(y)$, $x \mathcal{R} y \iff \mathcal{r}(x) = \mathcal{r}(y)$, and
 $\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$.

- For idempotent a and b, $a \mathcal{D} b$ iff $(\exists x) \ (a = \mathcal{d}(x) \text{ and } b = \mathcal{r}(x))$.

- For a Boolean inverse semigroup S, the quotient $\text{Int } S = S/\mathcal{D}$ (the dimension interval of S) can be endowed with a partial addition, given by
 \[(x/\mathcal{D}) + (y/\mathcal{D}) = (x \oplus y)/\mathcal{D}, \text{ whenever } x \oplus y \text{ is defined.}\]
Green’s relation \mathcal{D}

- On any inverse semigroup, we set
 - $x \mathcal{L} y \iff d(x) = d(y)$, $x \mathcal{R} y \iff r(x) = r(y)$, and $\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$.
- For idempotent a and b, $a \mathcal{D} b$ iff $(\exists x) \left(a = d(x) \text{ and } b = r(x) \right)$.
- For a Boolean inverse semigroup S, the quotient $\text{Int } S = S/\mathcal{D}$ (the dimension interval of S) can be endowed with a partial addition, given by
 \[(x/\mathcal{D}) + (y/\mathcal{D}) = (x \oplus y)/\mathcal{D}, \text{ whenever } x \oplus y \text{ is defined.}\]

- **Important property of** $\text{Int } S$ *(not trivial)*: $x + (y + z)$ is defined iff $(x + y) + z$ is defined, and then both values are the same.
Green’s relation \mathcal{D}

- On any inverse semigroup, we set

$$x \mathcal{L} y \iff d(x) = d(y), \quad x \mathcal{R} y \iff r(x) = r(y), \quad \text{and} \quad \mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}.$$

- For idempotent a and b, $a \mathcal{D} b$ iff $(\exists x) (a = d(x) \text{ and } b = r(x)).$

- For a Boolean inverse semigroup S, the quotient $\text{Int } S = S/\mathcal{D}$ (the dimension interval of S) can be endowed with a partial addition, given by

$$(x/\mathcal{D}) + (y/\mathcal{D}) = (x \oplus y)/\mathcal{D}, \quad \text{whenever } x \oplus y \text{ is defined}.$$

- **Important property of** $\text{Int } S$ (not trivial): $x + (y + z)$ is defined iff $(x + y) + z$ is defined, and then both values are the same.

- The type monoid of S, denoted by $\text{Typ } S$, is the universal monoid of the partial commutative monoid $\text{Int } S$.

Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.
Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.

$S = \text{Inv}(\mathcal{B}, G)$ is a Boolean inverse semigroup.
Type monoid of Inv(\(\mathcal{B}, G\))

- Let a group \(G\) act by automorphisms on a generalized Boolean algebra \(\mathcal{B}\).
- \(S = \text{Inv}(\mathcal{B}, G)\) is a Boolean inverse semigroup.
- What is \(\mathcal{D}\) on its idempotents?
Type monoid of $\text{Inv}(\mathcal{B}, G)$

- Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.
- $S = \text{Inv}(\mathcal{B}, G)$ is a Boolean inverse semigroup.
- What is \mathcal{D} on its idempotents?
- $\text{id}_X \mathcal{D} \text{id}_Y$ iff there is a partial bijection f, piecewise in G, defined on X, such that $f[X] = Y$.

Dobbertin's Theorem
Abelian ℓ-groups

Type monoids and nonstable K-theory
$K(s)$
Typ $s \rightarrow V(K(s))$
Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.

- $S = \text{Inv}(\mathcal{B}, G)$ is a Boolean inverse semigroup.
- What is \mathcal{D} on its idempotents?
- $\text{id}_X \mathcal{D} \text{id}_Y$ iff there is a partial bijection f, piecewise in G, defined on X, such that $f[X] = Y$.

That is, there are decompositions $X = \bigcup_{i=1}^{n} X_i$, $Y = \bigcup_{i=1}^{n} Y_i$, together with $g_i \in G$, such that each X_i, $Y_i \in \mathcal{B}$ and each $Y_i = g_i X_i$.
Type monoid of \(\text{Inv}(\mathcal{B}, G) \)

- Let a group \(G \) act by automorphisms on a generalized Boolean algebra \(\mathcal{B} \).
- \(S = \text{Inv}(\mathcal{B}, G) \) is a Boolean inverse semigroup.
- What is \(\mathcal{D} \) on its idempotents?
- \(\text{id}_X \mathcal{D} \text{id}_Y \) iff there is a partial bijection \(f \), piecewise in \(G \), defined on \(X \), such that \(f[X] = Y \).
- That is, there are decompositions \(X = \bigcup_{i=1}^{n} X_i, Y = \bigcup_{i=1}^{n} Y_i \), together with \(g_i \in G \), such that each \(X_i, Y_i \in \mathcal{B} \) and each \(Y_i = g_iX_i \).
- This means that \(X \) and \(Y \) are \(G \)-equidecomposable, with pieces from \(\mathcal{B} \).
Type monoid of \(\text{Inv}(\mathcal{B}, G) \)

- Let a group \(G \) act by automorphisms on a generalized Boolean algebra \(\mathcal{B} \).
- \(S = \text{Inv}(\mathcal{B}, G) \) is a Boolean inverse semigroup.
- What is \(\mathcal{D} \) on its idempotents?
- \(\text{id}_X \mathcal{D} \text{id}_Y \) iff there is a partial bijection \(f \), piecewise in \(G \), defined on \(X \), such that \(f[X] = Y \).
- That is, there are decompositions \(X = \bigcup_{i=1}^{n} X_i \), \(Y = \bigcup_{i=1}^{n} Y_i \), together with \(g_i \in G \), such that each \(X_i, Y_i \in \mathcal{B} \) and each \(Y_i = g_iX_i \).
- This means that \(X \) and \(Y \) are \(G \)-equidecomposable, with pieces from \(\mathcal{B} \).
- Denote by \(\mathbb{Z}^+\langle \mathcal{B} \rangle \| G \) the monoid of [generated by] all equidecomposability types of members of \(\mathcal{B} \) with respect to the action of \(G \).
Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.

$S = \text{Inv}(\mathcal{B}, G)$ is a Boolean inverse semigroup.

What is \mathcal{D} on its idempotents?

$id_X \mathcal{D} id_Y$ iff there is a partial bijection f, piecewise in G, defined on X, such that $f[X] = Y$.

That is, there are decompositions $X = \bigcup_{i=1}^{n} X_i$, $Y = \bigcup_{i=1}^{n} Y_i$, together with $g_i \in G$, such that each $X_i, Y_i \in \mathcal{B}$ and each $Y_i = g_i X_i$.

This means that X and Y are G-equidecomposable, with pieces from \mathcal{B}.

Denote by $\mathbb{Z}^+\langle \mathcal{B} \rangle \! \! / \! \! G$ the monoid of [generated by] all equidecomposability types of members of \mathcal{B} with respect to the action of G.

Then the type monoid of $\text{Inv}(\mathcal{B}, G)$ is isomorphic to $\mathbb{Z}^+\langle \mathcal{B} \rangle \! \! / \! \! G$.
Measurable monoids

- Say that a commutative monoid is **measurable** if it is isomorphic to Typ S, for some Boolean inverse semigroup S.

Say that a commutative monoid is **measurable** if it is isomorphic to Typ S, for some Boolean inverse semigroup S.

By the above, every $\mathbb{Z}^+ \rtimes B \rtimes G$ (where a group G acts on a generalized Boolean algebra B) is measurable. The converse holds (not so trivial). Starting with a Boolean inverse semigroup S, we need to find G, B such that Typ $S \cong \mathbb{Z}^+ \rtimes B \rtimes G$. First guess: try $B = \text{Id} p_S$, $G = \text{inner automorphisms}$ (?) of B.

Problem: the map $f : e \mapsto xe - 1$, for e idempotent $\leq d(x)$, may not extend to any automorphism of B. Can be solved by representing B as generalized Boolean lattice of subsets of some set Ω, then duplicating Ω. This leaves enough room to extend f.

12/23
Measurable monoids

- Say that a commutative monoid is measurable if it is isomorphic to Typ S, for some Boolean inverse semigroup S.
- By the above, every $\mathbb{Z}^+\langle B \rangle / G$ (where a group G acts on a generalized Boolean algebra B) is measurable.
Say that a commutative monoid is **measurable** if it is isomorphic to Typ S, for some Boolean inverse semigroup S.

By the above, every $\mathbb{Z}^+\langle \mathcal{B} \rangle/\langle G \rangle$ (where a group G acts on a generalized Boolean algebra \mathcal{B}) is measurable.

The converse holds (not so trivial).
Measurable monoids

- Say that a commutative monoid is measurable if it is isomorphic to $\text{Typ } S$, for some Boolean inverse semigroup S.

- By the above, every $\mathbb{Z}^+\langle \mathcal{B} \rangle \!\!\!\!/ G$ (where a group G acts on a generalized Boolean algebra \mathcal{B}) is measurable.

- The converse holds (not so trivial).

- Starting with a Boolean inverse semigroup S, we need to find G, \mathcal{B} such that $\text{Typ } S \cong \mathbb{Z}^+\langle \mathcal{B} \rangle \!\!\!\!/ G$.
Measurable monoids

- Say that a commutative monoid is measurable if it is isomorphic to Typ S, for some Boolean inverse semigroup S.
- By the above, every $\mathbb{Z}^+\langle \mathcal{B} \rangle \triangleright G$ (where a group G acts on a generalized Boolean algebra \mathcal{B}) is measurable.
- The converse holds (not so trivial).
- Starting with a Boolean inverse semigroup S, we need to find G, \mathcal{B} such that Typ $S \cong \mathbb{Z}^+\langle \mathcal{B} \rangle \triangleright G$.
- First guess: try $\mathcal{B} = \text{idp } S$, $G =$ “inner automorphisms” (?) of \mathcal{B} (Note: $\forall x$, \forall idempotent e, xex^{-1} is idempotent).
Say that a commutative monoid is **measurable** if it is isomorphic to Typ S, for some Boolean inverse semigroup S.

By the above, every $\mathbb{Z}^+ \langle B \rangle \rhd G$ (where a group G acts on a generalized Boolean algebra B) is measurable.

The converse holds (not so trivial).

Starting with a Boolean inverse semigroup S, we need to find G, B such that Typ $S \cong \mathbb{Z}^+ \langle B \rangle \rhd G$.

First guess: try $B = \text{Idp } S$, $G =$ “inner automorphisms” (?) of B (Note: $\forall x$, \forall idempotent e, xex^{-1} is idempotent).

Problem: the map $f_x : e \mapsto xex^{-1}$, for e idempotent $\leq d(x)$, may not extend to any automorphism of B.

Type monoids

- The variety of BISs
- ISs from partial functions
- BISs and tight maps
- Biases
- The type monoid
- From \mathcal{D} to Typ S
- Typ S and equidecomposability types
- Dobbertin’s Theorem
- Abelian ℓ-groups

** measurable monoids**

Say that a commutative monoid is measurable if it is isomorphic to Typ S, for some Boolean inverse semigroup S.

By the above, every $\mathbb{Z}^+ \langle B \rangle \rhd G$ (where a group G acts on a generalized Boolean algebra B) is measurable.

The converse holds (not so trivial).

Starting with a Boolean inverse semigroup S, we need to find G, B such that Typ $S \cong \mathbb{Z}^+ \langle B \rangle \rhd G$.

First guess: try $B = \text{Idp } S$, $G =$ “inner automorphisms” (?) of B (Note: $\forall x$, \forall idempotent e, xex^{-1} is idempotent).

Problem: the map $f_x : e \mapsto xex^{-1}$, for e idempotent $\leq d(x)$, may not extend to any automorphism of B.

Measurable monoids

- Say that a commutative monoid is measurable if it is isomorphic to Typ S, for some Boolean inverse semigroup S.
- By the above, every $\mathbb{Z}^+\langle B\rangle//G$ (where a group G acts on a generalized Boolean algebra B) is measurable.
- The converse holds (not so trivial).
- Starting with a Boolean inverse semigroup S, we need to find G, B such that Typ $S \cong \mathbb{Z}^+\langle B\rangle//G$.
- First guess: try $B = \text{Idp } S$, $G =$ “inner automorphisms” (?) of B ($\text{Note: } \forall x, \forall \text{idempotent } e, xex^{-1} \text{ is idempotent}$).
- Problem: the map $f_x: e \mapsto xex^{-1}$, for e idempotent $\leq d(x)$, may not extend to any automorphism of B.
- Can be solved by representing B as generalized Boolean lattice of subsets of some set Ω, then duplicating Ω. This leaves enough room to extend f_x.

Say that a commutative monoid is measurable if it is isomorphic to Typ S, for some Boolean inverse semigroup S.

By the above, every $\mathbb{Z}^+\langle B\rangle//G$ (where a group G acts on a generalized Boolean algebra B) is measurable.

The converse holds (not so trivial).

Starting with a Boolean inverse semigroup S, we need to find G, B such that Typ $S \cong \mathbb{Z}^+\langle B\rangle//G$.

First guess: try $B = \text{Idp } S$, $G =$ “inner automorphisms” (?) of B ($\text{Note: } \forall x, \forall \text{idempotent } e, xex^{-1} \text{ is idempotent}$).

Problem: the map $f_x: e \mapsto xex^{-1}$, for e idempotent $\leq d(x)$, may not extend to any automorphism of B.

Can be solved by representing B as generalized Boolean lattice of subsets of some set Ω, then duplicating Ω. This leaves enough room to extend f_x.

Say that a commutative monoid is measurable if it is isomorphic to Typ S, for some Boolean inverse semigroup S.

By the above, every $\mathbb{Z}^+\langle B\rangle//G$ (where a group G acts on a generalized Boolean algebra B) is measurable.

The converse holds (not so trivial).

Starting with a Boolean inverse semigroup S, we need to find G, B such that Typ $S \cong \mathbb{Z}^+\langle B\rangle//G$.

First guess: try $B = \text{Idp } S$, $G =$ “inner automorphisms” (?) of B ($\text{Note: } \forall x, \forall \text{idempotent } e, xex^{-1} \text{ is idempotent}$).

Problem: the map $f_x: e \mapsto xex^{-1}$, for e idempotent $\leq d(x)$, may not extend to any automorphism of B.

Can be solved by representing B as generalized Boolean lattice of subsets of some set Ω, then duplicating Ω. This leaves enough room to extend f_x.

Say that a commutative monoid is measurable if it is isomorphic to Typ S, for some Boolean inverse semigroup S.

By the above, every $\mathbb{Z}^+\langle B\rangle//G$ (where a group G acts on a generalized Boolean algebra B) is measurable.

The converse holds (not so trivial).

Starting with a Boolean inverse semigroup S, we need to find G, B such that Typ $S \cong \mathbb{Z}^+\langle B\rangle//G$.

First guess: try $B = \text{Idp } S$, $G =$ “inner automorphisms” (?) of B ($\text{Note: } \forall x, \forall \text{idempotent } e, xex^{-1} \text{ is idempotent}$).

Problem: the map $f_x: e \mapsto xex^{-1}$, for e idempotent $\leq d(x)$, may not extend to any automorphism of B.

Can be solved by representing B as generalized Boolean lattice of subsets of some set Ω, then duplicating Ω. This leaves enough room to extend f_x.

Say that a commutative monoid is measurable if it is isomorphic to Typ S, for some Boolean inverse semigroup S.

By the above, every $\mathbb{Z}^+\langle B\rangle//G$ (where a group G acts on a generalized Boolean algebra B) is measurable.

The converse holds (not so trivial).

Starting with a Boolean inverse semigroup S, we need to find G, B such that Typ $S \cong \mathbb{Z}^+\langle B\rangle//G$.

First guess: try $B = \text{Idp } S$, $G =$ “inner automorphisms” (?) of B ($\text{Note: } \forall x, \forall \text{idempotent } e, xex^{-1} \text{ is idempotent}$).

Problem: the map $f_x: e \mapsto xex^{-1}$, for e idempotent $\leq d(x)$, may not extend to any automorphism of B.

Can be solved by representing B as generalized Boolean lattice of subsets of some set Ω, then duplicating Ω. This leaves enough room to extend f_x.

Measurability versus equidecomposability

Proposition
Measurability versus equidecomposability

Proposition

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^+ \langle B \rangle \rtimes G$ for some action of a group G on a generalized Boolean algebra B.
Measurability versus equidecomposability

Proposition

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^+ \langle \mathcal{B} \rangle \left/ \mathbb{G} \right.$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

- Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., antigroup) S.
Measurability versus equidecomposability

Proposition

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^+ \langle \mathcal{B} \rangle / G$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

- Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., antigroup) S. (meet-semigroup: replace Ω by $\Omega \times G$; antigroup: Typ$(S) \cong$ Typ(S/μ).)
Measurability versus equidecomposability

Proposition

A commutative monoid M is measurable (i.e., $\text{Typ } S$ for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^+ \langle \mathcal{B} \rangle \big/ G$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

- Every measurable monoid is isomorphic to $\text{Typ } S$ for a Boolean meet-semigroup (resp., antigroup) S. (meet-semigroup: replace Ω by $\Omega \times G$; antigroup: $\text{Typ}(S) \cong \text{Typ}(S/\mu)$.)
- There is a countable counterexample showing that “meet-semigroup” and “antigroup” cannot be reached simultaneously.
Measurability versus equidecomposability

Proposition

A commutative monoid M is measurable (i.e., $\text{Typ} \ S$ for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^+ \langle \mathcal{B} \rangle \parallel G$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

- Every measurable monoid is isomorphic to $\text{Typ} \ S$ for a Boolean meet-semigroup (resp., antigroup) S. (*meet-semigroup*: replace Ω by $\Omega \times G$; *antigroup*: $\text{Typ}(S) \cong \text{Typ}(S/\mu)$.)
- There is a countable counterexample showing that “meet-semigroup” and “antigroup” cannot be reached simultaneously.
- Every measurable monoid M is conical, that is, has $x + y = 0 \Rightarrow x = y = 0$.
Measurability versus equidecomposability

Proposition

A commutative monoid M is measurable (i.e., $\text{Typ } S$ for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^+ \langle \mathcal{B} \rangle \simeq G$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

- Every measurable monoid is isomorphic to $\text{Typ } S$ for a Boolean meet-semigroup (resp., antigroup) S. *(meet-semigroup: replace Ω by $\Omega \times G$; antigroup: $\text{Typ}(S) \cong \text{Typ}(S/\mu)$).*
- There is a countable counterexample showing that “meet-semigroup” and “antigroup” cannot be reached simultaneously.
- Every measurable monoid M is conical, that is, has $x + y = 0 \Rightarrow x = y = 0$.
- Also, M is a refinement monoid, that is, whenever $a_0 + a_1 = b_0 + b_1$ in M, there are $c_{0,0}, c_{0,1}, c_{1,0}, c_{1,1} \in M$ such that each $a_i = c_{i,0} + c_{i,1}$ and each $b_j = c_{0,j} + c_{1,j}$.
Measurability versus equidecomposability

Proposition

A commutative monoid M is measurable (i.e., $\text{Typ } S$ for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^+ \langle \mathcal{B} \rangle /\!// G$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

- Every measurable monoid is isomorphic to $\text{Typ } S$ for a Boolean meet-semigroup (resp., antigroup) S. (meet-semigroup: replace Ω by $\Omega \times G$; antigroup: $\text{Typ}(S) \cong \text{Typ}(S/\mu)$.)
- There is a countable counterexample showing that “meet-semigroup” and “antigroup” cannot be reached simultaneously.
- Every measurable monoid M is conical, that is, has $x + y = 0 \Rightarrow x = y = 0$.
- Also, M is a refinement monoid, that is, whenever $a_0 + a_1 = b_0 + b_1$ in M, there are $c_{0,0}, c_{0,1}, c_{1,0}, c_{1,1} \in M$ such that each $a_i = c_{i,0} + c_{i,1}$ and each $b_j = c_{0,j} + c_{1,j}$.
- How about the converse?
Dobbertin’s V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $e \in M$.

Then there are a countable Boolean algebra B and a finitely additive measure $\mu : B \to M$ such that $\mu(1) = e$, $\mu^{-1}\{0\} = \{0\}$, and whenever $\mu(c) = a + b$, there exists a decomposition $c = a \oplus b$ in B such that $\mu(a) = a$ and $\mu(b) = b$.

(We say that μ is a V-measure.) Moreover, the pair $(B \hookrightarrow \mu)$ is unique up to isomorphism.

Example: $M = (\mathbb{Z} \hookrightarrow + \hookrightarrow 0)$, $e = 1$. Then $B = \{0 \hookrightarrow 1\}$, $\mu(1) = 1$.

Example: $M = (\{0 \hookrightarrow 1\} \hookrightarrow \lor \hookrightarrow 0)$, the two-element semilattice, and $e = 1$. Then B is the unique countable atomless Boolean algebra, $\mu(x) = 1$ iff $x \neq 0$.

Possibilities of extension of Dobbertin’s Theorem: For card $M = \aleph_1$, uniqueness is lost. If card $M \geq \aleph_2$, then existence is lost (W 1998).
Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $e \in M$.
Dobbertin’s V-measures

Theorem (Dobbertin, 1983)

Let M be a **countable**, conical refinement monoid and let $e \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu: B \rightarrow M$ such that $\mu(1) = e$, $\mu^{-1}\{0\} = \{0\}$, and whenever $\mu(c) = a + b$, there exists a decomposition $c = a \oplus b$ in B such that $\mu(a) = a$ and $\mu(b) = b$.
Dobbertin’s V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $e \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu : B \to M$ such that $\mu(1) = e$, $\mu^{-1}\{0\} = \{0\}$, and whenever $\mu(c) = a + b$, there exists a decomposition $c = a \oplus b$ in B such that $\mu(a) = a$ and $\mu(b) = b$. (We say that μ is a V-measure.)
Dobbertin’s V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $e \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu : B \to M$ such that $\mu(1) = e$, $\mu^{-1}\{0\} = \{0\}$, and whenever $\mu(c) = a + b$, there exists a decomposition $c = a \oplus b$ in B such that $\mu(a) = a$ and $\mu(b) = b$. (We say that μ is a V-measure.) Moreover, the pair (B, μ) is unique up to isomorphism.
Dobbertin’s V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $e \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu : B \rightarrow M$ such that $\mu(1) = e$, $\mu^{-1}\{0\} = \{0\}$, and whenever $\mu(c) = a + b$, there exists a decomposition $c = a \oplus b$ in B such that $\mu(a) = a$ and $\mu(b) = b$. (We say that μ is a V-measure.) Moreover, the pair (B, μ) is unique up to isomorphism.

- **Example:** $M = (\mathbb{Z}^+, +, 0)$, $e = 1$. Then $B = \{0, 1\}$, $\mu(1) = 1$.

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $e \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu : B \to M$ such that $\mu(1) = e$, $\mu^{-1}\{0\} = \{0\}$, and whenever $\mu(c) = a + b$, there exists a decomposition $c = a \oplus b$ in B such that $\mu(a) = a$ and $\mu(b) = b$. (We say that μ is a V-measure.) Moreover, the pair (B, μ) is unique up to isomorphism.

- **Example:** $M = (\mathbb{Z}^+, +, 0)$, $e = 1$. Then $B = \{0, 1\}$, $\mu(1) = 1$.
- **Example:** $M = (\{0, 1\}, \lor, 0)$, the two-element semilattice, and $e = 1$. Then B is the unique countable atomless Boolean algebra, $\mu(x) = 1$ iff $x \neq 0$.

Dobbertin’s V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $e \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu : B \to M$ such that $\mu(1) = e$, $\mu^{-1}\{0\} = \{0\}$, and whenever $\mu(c) = a + b$, there exists a decomposition $c = a \oplus b$ in B such that $\mu(a) = a$ and $\mu(b) = b$. (We say that μ is a V-measure.) Moreover, the pair (B, μ) is unique up to isomorphism.

- **Example**: $M = (\mathbb{Z}^+, +, 0)$, $e = 1$. Then $B = \{0, 1\}$, $\mu(1) = 1$.
- **Example**: $M = (\{0, 1\}, \lor, 0)$, the two-element semilattice, and $e = 1$. Then B is the unique countable atomless Boolean algebra, $\mu(x) = 1$ iff $x \neq 0$.

Possibilities of extension of Dobbertin’s Theorem:
Dobbertin’s V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $e \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu : B \to M$ such that $\mu(1) = e$, $\mu^{-1}\{0\} = \{0\}$, and whenever $\mu(c) = a + b$, there exists a decomposition $c = a \oplus b$ in B such that $\mu(a) = a$ and $\mu(b) = b$. (We say that μ is a V-measure.) Moreover, the pair (B, μ) is unique up to isomorphism.

- **Example**: $M = (\mathbb{Z}^+, +, 0), e = 1$. Then $B = \{0, 1\}, \mu(1) = 1$.
- **Example**: $M = (\{0, 1\}, \lor, 0)$, the two-element semilattice, and $e = 1$. Then B is the unique countable atomless Boolean algebra, $\mu(x) = 1$ iff $x \neq 0$.

Possibilities of extension of Dobbertin’s Theorem:

For $\text{card } M = \aleph_1$, uniqueness is lost.
Dobbertin’s V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $e \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu : B \to M$ such that $\mu(1) = e$, $\mu^{-1}\{0\} = \{0\}$, and whenever $\mu(c) = a + b$, there exists a decomposition $c = a \oplus b$ in B such that $\mu(a) = a$ and $\mu(b) = b$. (We say that μ is a V-measure.) Moreover, the pair (B, μ) is unique up to isomorphism.

- **Example**: $M = (\mathbb{Z}^+, +, 0)$, $e = 1$. Then $B = \{0, 1\}$, $\mu(1) = 1$.
- **Example**: $M = (\{0, 1\}, \lor, 0)$, the two-element semilattice, and $e = 1$. Then B is the unique countable atomless Boolean algebra, $\mu(x) = 1$ iff $x \neq 0$.

Possibilities of extension of Dobbertin’s Theorem:

For $\text{card } M = \aleph_1$, uniqueness is lost. If $\text{card } M \geq \aleph_2$, then existence is lost (W 1998).
From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.
From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition
From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.
From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.

- **Idea of proof**:
From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.

- **Idea of proof:**
 - M is an *o-ideal* in $M' = M \sqcup \{\infty\}$. Since the o-ideals of Typ S correspond to the tight ideals of S, the problem is reduced to the case where M has an order-unit e.
From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition
Every countable conical refinement monoid is measurable.

- **Idea of proof:**
 - M is an o-ideal in $M' = M \sqcup \{\infty\}$. Since the o-ideals of Typ S correspond to the tight ideals of S, the problem is reduced to the case where M has an order-unit e.
 - Let $\mu: (B, 1) \rightarrow (M, e)$ be Dobbertin’s V-measure.
From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.

- Idea of proof:
- M is an o-ideal in $M’ = M \cup \{\infty\}$. Since the o-ideals of Typ S correspond to the tight ideals of S, the problem is reduced to the case where M has an order-unit e.
- Let $\mu : (B, 1) \to (M, e)$ be Dobbertin’s V-measure.
- Set $S = \text{Inv}(B, \mu) = \text{semigroup of all } \mu\text{-preserving partial isomorphisms } f : B \downarrow a \to B \downarrow b$, where $a, b \in B$ with $\mu(a) = \mu(b)$.
From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.

- Idea of proof:
 - M is an o-ideal in $M' = M \sqcup \{\infty\}$. Since the o-ideals of Typ S correspond to the tight ideals of S, the problem is reduced to the case where M has an order-unit e.
 - Let $\mu: (B, 1) \to (M, e)$ be Dobbertin’s V-measure.
 - Set $S = \text{Inv}(B, \mu)$ = semigroup of all μ-preserving partial isomorphisms $f: B \downarrow a \to B \downarrow b$, where $a, b \in B$ with $\mu(a) = \mu(b)$.
 - S is a Boolean inverse semigroup, with idempotents $\overline{a} = \text{id}_{B \downarrow a}$ where $a \in B$.
Because of the uniqueness statement in Dobbertin’s Theorem, for any $a, b \in B$, if $\mu(a) = \mu(b)$, there is $f \in S$ (usually not unique) such that $f(a) = b$.
Because of the uniqueness statement in Dobbertin’s Theorem, for any \(a, b \in B \), if \(\mu(a) = \mu(b) \), there is \(f \in S \) (usually not unique) such that \(f(a) = b \).

Hence, \(\bar{a} \preceq \bar{b} \) within \(S \) iff \(\mu(a) = \mu(b) \).
Measurability of countable CRM's (cont'd)

- Because of the uniqueness statement in Dobbertin's Theorem, for any \(a, b \in B \), if \(\mu(a) = \mu(b) \), there is \(f \in S \) (usually not unique) such that \(f(a) = b \).

- Hence, \(a \not\sim b \) within \(S \) iff \(\mu(a) = \mu(b) \).

- By the definition of \(\text{Typ} \, S \), there is a unique monoid homomorphism \(\varphi: \text{Typ} \, S \to M \) such that \(\varphi(\bar{a}/\mathcal{D}) = \mu(a) \) \(\forall a \in B \).
Measurability of countable CRMs (cont’d)

Because of the uniqueness statement in Dobbertin’s Theorem, for any \(a, b \in B \), if \(\mu(a) = \mu(b) \), there is \(f \in S \) (usually not unique) such that \(f(a) = b \).

Hence, \(a \not\sim b \) within \(S \) iff \(\mu(a) = \mu(b) \).

By the definition of \(\text{Typ} S \), there is a unique monoid homomorphism \(\varphi : \text{Typ} S \to M \) such that \(\varphi(\overline{a}/\mathcal{D}) = \mu(a) \) \(\forall a \in B \).

Since \(M \) is a refinement monoid and \(\mu \) is a \(V \)-measure, the range of \(\varphi \) (which is also the range of \(\mu \)) generates \(M \) as a submonoid.
Measurability of countable CRMs (cont’d)

- Because of the uniqueness statement in Dobbertin’s Theorem, for any \(a, b \in B \), if \(\mu(a) = \mu(b) \), there is \(f \in S \) (usually not unique) such that \(f(a) = b \).

- Hence, \(a \not\asymp b \) within \(S \) iff \(\mu(a) = \mu(b) \).

- By the definition of \(\text{Typ} S \), there is a unique monoid homomorphism \(\varphi : \text{Typ} S \to M \) such that \(\varphi(\overline{a}/\mathcal{D}) = \mu(a) \) \(\forall a \in B \).

- Since \(M \) is a refinement monoid and \(\mu \) is a \(V \)-measure, the range of \(\varphi \) (which is also the range of \(\mu \)) generates \(M \) as a submonoid.

- Moreover, \(\varphi \) is one-to-one on \(\text{Int} S \) (because \(a \not\asymp b \) within \(S \) iff \(\mu(a) = \mu(b) \)).
Because of the uniqueness statement in Dobbertin’s Theorem, for any \(a, b \in B\), if \(\mu(a) = \mu(b)\), there is \(f \in S\) (usually not unique) such that \(f(a) = b\).

Hence, \(a \not\sim b\) within \(S\) iff \(\mu(a) = \mu(b)\).

By the definition of \(\text{Typ} S\), there is a unique monoid homomorphism \(\varphi: \text{Typ} S \rightarrow M\) such that \(\varphi(\bar{a}/\mathcal{D}) = \mu(a)\) \(\forall a \in B\).

Since \(M\) is a refinement monoid and \(\mu\) is a \(V\)-measure, the range of \(\varphi\) (which is also the range of \(\mu\)) generates \(M\) as a submonoid.

Moreover, \(\varphi\) is one-to-one on \(\text{Int} S\) (because \(a \not\sim b\) within \(S\) iff \(\mu(a) = \mu(b)\)).

By the general properties of refinement monoids, this implies that \(\varphi\) is an isomorphism.
Because of the uniqueness statement in Dobbertin's Theorem, for any \(a, b \in B\), if \(\mu(a) = \mu(b)\), there is \(f \in S\) (usually not unique) such that \(f(a) = b\).

Hence, \(a \not\mathcal{D} b\) within \(S\) iff \(\mu(a) = \mu(b)\).

By the definition of \(\text{Typ } S\), there is a unique monoid homomorphism \(\varphi: \text{Typ } S \to M\) such that \(\varphi(\overline{a}/\mathcal{D}) = \mu(a)\) \(\forall a \in B\).

Since \(M\) is a refinement monoid and \(\mu\) is a \(V\)-measure, the range of \(\varphi\) (which is also the range of \(\mu\)) generates \(M\) as a submonoid.

Moreover, \(\varphi\) is one-to-one on \(\text{Int } S\) (because \(a \not\mathcal{D} b\) within \(S\) iff \(\mu(a) = \mu(b)\)).

By the general properties of refinement monoids, this implies that \(\varphi\) is an isomorphism. Hence \(M \cong \text{Typ } S\).
Representing abelian ℓ-groups

Theorem (W 2015)

For every abelian ℓ-group G, there is a Boolean inverse semigroup S, explicitly constructed, such that $\text{Typ} S \cong G$.

The poset $D = G \cup \{\bot\}$, for a new bottom element \bot, is a distributive lattice with zero. Embed D into its enveloping Boolean ring $B = BR(D)$. The elements of B have the form $\sum 0 \leq i < n (a_{2i+1} + a_{2i})$, where all $a_i \in D$ and $\bot \leq a_0 \leq \cdots \leq a_{2n}$.

Adding the condition $a_0 \neq \bot$ (i.e., each $a_i \in G$) yields a Boolean subring B of B.

The dimension monoid $\text{Dim} G$ of the (distributive) lattice $(G \rightarrow \vee \rightarrow \wedge)$ is isomorphic to the monoid $\mathbb{Z}^+ \otimes B$ of all nonnegative linear combinations of members of B, with \oplus in B turned to $+$ in $\mathbb{Z}^+ \otimes B$.
Representing abelian ℓ-groups

Theorem (W 2015)

For every abelian ℓ-group G, there is a Boolean inverse semigroup S, explicitly constructed, such that $\text{Typ } S \cong G^+$.

The poset $D = G \uplus \{\perp\}$, for a new bottom element \perp, is a distributive lattice with zero. Embed D into its enveloping Boolean ring $B = B R(D)$. The elements of B have the form $\langle 0 \leq i < n \cdot (a_2 i + 1 \cdot a_2 i) \rangle$, where all $a_i \in D$ and $\perp \leq a_0 \leq \cdots \leq a_{2n}$. Adding the condition $a_0 \neq \perp$ (i.e., each $a_i \in G$) yields a Boolean subring B of B. The dimension monoid $\text{Dim } G$ of the (distributive) lattice $(G \uplus \vee \uplus \wedge)$ is isomorphic to the monoid $\mathbb{Z}^+ \cdot B \cdot \mathbb{Z}$ of all nonnegative linear combinations of members of B, with \oplus in B turned to $+$ in $\mathbb{Z}^+ \cdot B \cdot \mathbb{Z}$.

17/23
Representing abelian ℓ-groups

Theorem (W 2015)

For every abelian ℓ-group G, there is a Boolean inverse semigroup S, explicitly constructed, such that $\text{Typ } S \cong G^+$.

- The poset $D = G \sqcup \{\bot\}$, for a new bottom element \bot, is a distributive lattice with zero.

17/23
Representing abelian ℓ-groups

Theorem (W 2015)

For every abelian ℓ-group G, there is a Boolean inverse semigroup S, explicitly constructed, such that $\text{Typ } S \cong G^+$.

- The poset $D = G \sqcup \{\bot\}$, for a new bottom element \bot, is a distributive lattice with zero.
- Embed D into its enveloping Boolean ring $\overline{B} = \text{BR}(D)$.
Representing abelian ℓ-groups

Theorem (W 2015)

For every abelian ℓ-group G, there is a Boolean inverse semigroup S, explicitly constructed, such that $\text{Typ } S \cong G^+$.

- The poset $D = G \sqcup \{\bot\}$, for a new bottom element \bot, is a distributive lattice with zero.
- Embed D into its enveloping Boolean ring $\overline{B} = \text{BR}(D)$.
- The elements of \overline{B} have the form $\bigvee_{0 \leq i < n} (a_{2i+1} \mathbin{\triangleleft} a_{2i})$, where all $a_i \in D$ and $\bot \leq a_0 \leq \cdots \leq a_{2n}$.
Theorem (W 2015)

For every abelian \(\ell \)-group \(G \), there is a Boolean inverse semigroup \(S \), explicitly constructed, such that \(\text{Typ} S \cong G^+ \).

- The poset \(D = G \sqcup \{ \bot \} \), for a new bottom element \(\bot \), is a distributive lattice with zero.
- Embed \(D \) into its \textit{enveloping Boolean ring} \(\overline{B} = \text{BR}(D) \).
- The elements of \(\overline{B} \) have the form \(\bigvee_{0 \leq i < n} (a_{2i+1} \downarrow a_{2i}) \), where all \(a_i \in D \) and \(\bot \leq a_0 \leq \cdots \leq a_{2n} \).
- Adding the condition \(a_0 \neq \bot \) (i.e., each \(a_i \in G \)) yields a Boolean subring \(B \) of \(\overline{B} \).
Representing abelian \(\ell\)-groups

Theorem (W 2015)

For every abelian \(\ell\)-group \(G\), there is a Boolean inverse semigroup \(S\), explicitly constructed, such that \(\text{Typ} \, S \cong G^+\).

- The poset \(D = G \sqcup \{\bot\}\), for a new bottom element \(\bot\), is a distributive lattice with zero.
- Embed \(D\) into its **enveloping Boolean ring** \(\overline{B} = \text{BR}(D)\).
- The elements of \(\overline{B}\) have the form \(\bigvee_{0 \leq i < n} (a_{2i+1} \setminus a_{2i})\), where all \(a_i \in D\) and \(\bot \leq a_0 \leq \cdots \leq a_{2n}\).
- Adding the condition \(a_0 \neq \bot\) (i.e., each \(a_i \in G\)) yields a Boolean subring \(B\) of \(\overline{B}\).
- The **dimension monoid** \(\text{Dim} \, G\) of the (distributive) lattice \((G, \lor, \land)\) is isomorphic to the monoid \(\mathbb{Z}^+\langle B\rangle\) of all nonnegative linear combinations of members of \(B\), with \(\oplus\) in \(B\) turned to \(+\) in \(\mathbb{Z}^+\langle B\rangle\).
Representing abelian ℓ-groups (cont’d)

- Enables us to define a **V-measure** (as in Dobbertin’s Theorem)
 \[\mu : B \rightarrow G^+ \]
 by
Representing abelian \(\ell \)-groups (cont’d)

- Enables us to define a \textbf{V-measure} (as in Dobbertin’s Theorem) \(\mu : B \to G^+ \) by

\[
\mu \left(\bigvee_{0 \leq i < n} (a_{2i+1} \setminus a_{2i}) \right) = \sum_{i < n} (a_{2i+1} - a_{2i})
\]

(where \(a_0 \leq a_1 \leq \cdots \leq a_{2n} \) in \(G \)).

- Moreover, \(\forall a \in G \), the translation \(x \mapsto x + a \) “extends” to an automorphism \(\tau_a \) of \(B \). So \(\tau_a(y \setminus x) = (a + y) \setminus (a + x) \), \(\forall x \leq y \) in \(G \).
Enables us to define a **V-measure** (as in Dobbertin’s Theorem)

\[\mu : B \rightarrow G^+ \text{ by} \]

\[\mu \left(\bigvee_{0 \leq i < n} (a_{2i+1} \setminus a_{2i}) \right) = \sum_{i<n} (a_{2i+1} - a_{2i}) \]

(where \(a_0 \leq a_1 \leq \cdots \leq a_{2n} \) in \(G \)).

Moreover, \(\forall a \in G \), the translation \(x \mapsto x + a \) “extends” to an automorphism \(\tau_a \) of \(B \). So \(\tau_a(y \setminus x) = (a + y) \setminus (a + x) \), \(\forall x \leq y \) in \(G \).

\[\overline{G} = \{ \tau_a \mid a \in G \} \text{ is a subgroup of } \text{Aut } B, \text{ isomorphic to } G. \]
Representing abelian ℓ-groups (cont’d)

- Enables us to define a **V-measure** (as in Dobbertin’s Theorem) $\mu : B \to G^+$ by

$$\mu \left(\bigvee_{0 \leq i < n} (a_{2i+1} \setminus a_{2i}) \right) = \sum_{i < n} (a_{2i+1} - a_{2i})$$

(where $a_0 \leq a_1 \leq \cdots \leq a_{2n}$ in G).

- Moreover, $\forall a \in G$, the translation $x \mapsto x + a$ “extends” to an automorphism τ_a of B. So $\tau_a(y \setminus x) = (a + y) \setminus (a + x)$, $\forall x \leq y$ in G.

- $\overline{G} = \{ \tau_a \mid a \in G \}$ is a subgroup of $\text{Aut} B$, isomorphic to G.

- The desired BIS is $S = \text{Inv}(B, \overline{G})$.

Type monoids

- The variety of BISs
- ISs from partial functions
- BISs and tight maps
- Biases
- The type monoid
- From \mathcal{D} to $\text{Typ} S$
- $\text{Typ} S$ and equidecomposability types
- Dobbertin’s Theorem
- Abelian ℓ-groups

Type monoids and nonstable K-theory

- $K(S)$
- $\text{Typ} S \to \mathcal{V}(K(S))$
Representing abelian ℓ-groups (cont’d)

- Enables us to define a **V-measure** (as in Dobbertin’s Theorem) $\mu: B \rightarrow G^+$ by

$$\mu\left(\bigvee_{0 \leq i < n} \left(a_{2i+1} \setminus a_{2i} \right) \right) = \sum_{i<n} (a_{2i+1} - a_{2i})$$

(where $a_0 \leq a_1 \leq \cdots \leq a_{2n}$ in G).

- Moreover, $\forall a \in G$, the translation $x \mapsto x + a$ “extends” to an automorphism τ_a of B. So $\tau_a(y \setminus x) = (a + y) \setminus (a + x)$, $\forall x \leq y$ in G.

- $G = \{\tau_a \mid a \in G\}$ is a subgroup of $\text{Aut} \ B$, isomorphic to G.

- The desired BIS is $S = \text{Inv}(B, G)$. One must prove that for $x, y \in B$, $\mu(x) = \mu(y)$ iff x and y are equidecomposable modulo translations from G (think of elements of B as disjoint unions of intervals with endpoints from G).
Using Mundici’s 1986 result (MV-algebras \(\iff\) unit intervals of abelian \(\ell\)-groups), it thus follows that every MV-algebra is isomorphic to \(\text{Int } S = S/\mathcal{D}\), for some BIS \(S\).
Using Mundici’s 1986 result (MV-algebras \(\cong\) unit intervals of abelian \(\ell\)-groups), it thus follows that every MV-algebra is isomorphic to \(\text{Int } S = S/\mathcal{D}\), for some BIS \(S\). Every such \(S\) is factorizable (i.e., \(\forall x, \exists \text{ unit } g, x \leq g\)), and has \(\mathcal{D} = \mathcal{I}\).
Loose ends on ℓ-groups

- Using Mundici’s 1986 result (MV-algebras ⇔ unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to Int S = S/𝔻, for some BIS S. Every such S is factorizable (i.e., ∀x, ∃ unit g, x ≤ g), and has 𝔻 = 𝒯.

- In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).
Loose ends on ℓ-groups

- Using Mundici’s 1986 result (MV-algebras \Leftrightarrow unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to $\operatorname{Int} S = S/\mathcal{D}$, for some BIS S. Every such S is factorizable (i.e., $\forall x, \exists$ unit $g, x \leq g$), and has $\mathcal{D} = \mathcal{I}$.

- In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).

- Dropping separability and keeping \lim, this result can be extended to all G^+, where G is a dimension group (not necessarily lattice-ordered) of cardinality $\leq \aleph_1$.

Using Mundici’s 1986 result (MV-algebras \Leftrightarrow unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to $\operatorname{Int} S = S/\mathcal{D}$, for some BIS S. Every such S is factorizable (i.e., $\forall x, \exists$ unit $g, x \leq g$), and has $\mathcal{D} = \mathcal{I}$.

In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).

Dropping separability and keeping \lim, this result can be extended to all G^+, where G is a dimension group (not necessarily lattice-ordered) of cardinality $\leq \aleph_1$.

(Proof: mutatis mutandis extend the usual Elliott, Goodearl + Handelman arguments from locally matricial algebras, or C*-algebras, to BISs.)

Getting “locally matricial” in arbitrary cardinality: hopeless for arbitrary dimension groups (counterexamples of size \aleph_2), but still open for abelian ℓ-groups.
Loose ends on ℓ-groups

- Using Mundici’s 1986 result (MV-algebras \cong unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to $\text{Int} \, S = S/\mathcal{D}$, for some BIS S. Every such S is factorizable (i.e., $\forall x, \exists$ unit g, $x \leq g$), and has $\mathcal{D} = \mathcal{J}$.

- In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).

- Dropping separability and keeping \lim, this result can be extended to all G^+, where G is a dimension group (not necessarily lattice-ordered) of cardinality $\leq \aleph_1$. (Proof: mutatis mutandis extend the usual Elliott, Goodearl + Handelman arguments from locally matricial algebras, or C*-algebras, to BISs.)
Loose ends on ℓ-groups

- Using Mundici’s 1986 result (MV-algebras \iff unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to $\text{Int } S = S/\mathcal{D}$, for some BIS S. Every such S is factorizable (i.e., $\forall x, \exists$ unit $g, x \leq g$), and has $\mathcal{D} = \mathcal{I}$.

- In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).

- Dropping separability and keeping $\lim\implies$, this result can be extended to all G^+, where G is a dimension group (not necessarily lattice-ordered) of cardinality $\leq \aleph_1$. \textit{(Proof: mutatis mutandis} extend the usual Elliott, Goodearl + Handelman arguments from locally matricial algebras, or C^*-algebras, to BISs.)

- Getting “locally matricial” in arbitrary cardinality: hopeless for arbitrary dimension groups (counterexamples of size \aleph_2), but still open for abelian ℓ-groups.
Tight enveloping K-algebra of a BIS

Definition

For a unital ring K and a BIS S, K^S is the K-algebra defined by generators S and relations

\[\lambda s = s \lambda, s = s, \]

whenever $z = x \oplus y$ (within S).

For S a Boolean inverse meet-semigroup, K^S is isomorphic to Steinberg's $KU_T(S)$ (étale groupoid algebra of $U_T(S)$), where $U_T(S)$ is the universal tight groupoid of S.

Steinberg's construction extends to Hausdorff inverse semigroups (not necessarily Boolean).

If K is an involutary ring, then K^S is an involutary K-algebra (set $(\lambda s)^* = \lambda^* s^{-1}$).

If $X \subseteq S$ generates S as a bias, then it also generates K^S as an involutary subring.

The construction K^S extends known constructions, such as Leavitt path algebras.
Tight enveloping K-algebra of a BIS

Definition

For a unital ring K and a BIS S, $K\langle S \rangle$ is the K-algebra defined by generators S and relations $\lambda s = s\lambda$, $1s = s$, $z = x + y$ (within $K\langle S \rangle$) whenever $z = x \oplus y$ (within S).
Tight enveloping K-algebra of a BIS

Definition

For a unital ring K and a BIS S, $K\langle S \rangle$ is the K-algebra defined by generators S and relations $\lambda s = s \lambda$, $1s = s$, $z = x + y$ (within $K\langle S \rangle$) whenever $z = x \oplus y$ (within S).

- For S a Boolean inverse meet-semigroup, $K\langle S \rangle$ is isomorphic to Steinberg’s $K \mathcal{U}_T(S)$ (étale groupoid algebra of $\mathcal{U}_T(S)$), where $\mathcal{U}_T(S)$ is called there the universal tight groupoid of S. Steinberg’s construction extends to Hausdorff inverse semigroups (not necessarily Boolean).
Tight enveloping K-algebra of a BIS

Definition

For a unital ring K and a BIS S, $K\langle S \rangle$ is the K-algebra defined by generators S and relations $\lambda s = s\lambda$, $1s = s$, $z = x + y$ (within $K\langle S \rangle$) whenever $z = x \oplus y$ (within S).

- For S a Boolean inverse meet-semigroup, $K\langle S \rangle$ is isomorphic to Steinberg’s $K\mathcal{U}_T(S)$ (étale groupoid algebra of $\mathcal{U}_T(S)$), where $\mathcal{U}_T(S)$ is called there the universal tight groupoid of S.
 Steinberg’s construction extends to Hausdorff inverse semigroups (not necessarily Boolean).

- If K is an involutary ring, then $K\langle S \rangle$ is an involutary K-algebra (set $(\lambda s)^* = \lambda^* s^{-1}$).
Tight enveloping K-algebra of a BIS

Definition

For a unital ring K and a BIS S, $K\langle S \rangle$ is the K-algebra defined by generators S and relations $\lambda s = s\lambda$, $1s = s$, $z = x + y$ (within $K\langle S \rangle$) whenever $z = x \oplus y$ (within S).

- For S a Boolean inverse meet-semigroup, $K\langle S \rangle$ is isomorphic to Steinberg’s $K\mathcal{U}_T(S)$ (étale groupoid algebra of $\mathcal{U}_T(S)$), where $\mathcal{U}_T(S)$ is called there the universal tight groupoid of S. Steinberg’s construction extends to Hausdorff inverse semigroups (not necessarily Boolean).

- If K is an involutary ring, then $K\langle S \rangle$ is an involutary K-algebra (set $(\lambda s)^* = \lambda^* s^{-1}$).

- If $X \subseteq S$ generates S as a bias, then it also generates $K\langle S \rangle$ as an involutary subring.
Tight enveloping K-algebra of a BIS

Definition
For a unital ring K and a BIS S, $K\langle S \rangle$ is the K-algebra defined by generators S and relations $\lambda s = s \lambda$, $1s = s$, $z = x + y$ (within $K\langle S \rangle$) whenever $z = x \oplus y$ (within S).

- For S a Boolean inverse meet-semigroup, $K\langle S \rangle$ is isomorphic to Steinberg’s $K \underline{U}_T(S)$ (étale groupoid algebra of $\underline{U}_T(S)$), where $\underline{U}_T(S)$ is called there the universal tight groupoid of S. Steinberg’s construction extends to Hausdorff inverse semigroups (not necessarily Boolean).
- If K is an involutary ring, then $K\langle S \rangle$ is an involutary K-algebra (set $(\lambda s)^* = \lambda^* s^{-1}$).
- If $X \subseteq S$ generates S as a bias, then it also generates $K\langle S \rangle$ as an involutary subring.
- The construction $K\langle S \rangle$ extends known constructions, such as Leavitt path algebras.
BISs interact with involutary rings

Proposition (W 2015)

\[\text{Idp}(S \otimes T) \cong (\text{Idp}(S)) \otimes (\text{Idp}(T)) \quad \text{and} \quad U_{\text{mon}}(S \otimes T) \cong U_{\text{mon}}(S) \otimes U_{\text{mon}}(T). \]
BISs interact with involutary rings

Proposition (W 2015)

Every inverse semigroup S, in an involutary ring R, is contained in a BIS $\overline{S} \subseteq R$, in which \oplus specializes orthogonal addition ($x + y$, where $x^* y = xy^* = 0$).
BISs interact with involutary rings

Proposition (W 2015)

Every inverse semigroup S, in an involutary ring R, is contained in a BIS $\overline{S} \subseteq R$, in which \oplus specializes orthogonal addition ($x + y$, where $x^*y = xy^* = 0$).

- Loosely speaking, this means that studying inverse semigroups in involutary rings reduces, in many instances, to studying Boolean inverse semigroups in involutary rings.
BISs interact with involutory rings

Proposition (W 2015)

Every inverse semigroup S, in an involutory ring R, is contained in a BIS $\overline{S} \subseteq R$, in which \oplus specializes orthogonal addition ($x + y$, where $x^* y = xy^* = 0$).

- Loosely speaking, this means that studying inverse semigroups in involutory rings reduces, in many instances, to studying Boolean inverse semigroups in involutory rings.
- Can, in certain conditions, be extended to involutory semirings.
BISs interact with involutary rings

Proposition (W 2015)

Every inverse semigroup S, in an involutary ring R, is contained in a BIS $\bar{S} \subseteq R$, in which \oplus specializes orthogonal addition ($x + y$, where $x^* y = xy^* = 0$).

- Loosely speaking, this means that studying inverse semigroups in involutary rings reduces, in many instances, to studying Boolean inverse semigroups in involutary rings.
- Can, in certain conditions, be extended to involutary semirings.
- Yields a workable definition of the tensor product $S \otimes T$ of two BISs S and T, which is still a BIS and has

 $\text{Idp}(S \otimes T) \cong (\text{Idp } S) \otimes (\text{Idp } T)$ and

 $\text{U}_{\text{mon}}(S \otimes T) \cong \text{U}_{\text{mon}}(S) \otimes \text{U}_{\text{mon}}(T)$.

Embedding properties of $K\langle S \rangle$

- For S a sub-BIS (⇔ sub-bias) of T, the canonical map $K\langle S \rangle \rightarrow K\langle T \rangle$ may not be one-to-one.
Embedding properties of $K\langle S \rangle$

- For S a sub-BIS (↔ sub-bias) of T, the canonical map $K\langle S \rangle \to K\langle T \rangle$ may not be one-to-one.
- Nevertheless, in a number of cases, it is one-to-one.
Embedding properties of $K\langle S \rangle$

- For S a sub-BIS (⇔ sub-bias) of T, the canonical map $K\langle S \rangle \rightarrow K\langle T \rangle$ may not be one-to-one.
- Nevertheless, in a number of cases, it is one-to-one.
- For example, if T is the regular representation of S, or if T is a Boolean inverse meet-semigroup and S is closed under finite meets, then $K\langle S \rangle \rightarrow K\langle T \rangle$ is one-to-one.
Embedding properties of $K\langle S \rangle$

- For S a sub-BIS (⇔ sub-bias) of T, the canonical map $K\langle S \rangle \to K\langle T \rangle$ may not be one-to-one.
- Nevertheless, in a number of cases, it is one-to-one.
- For example, if T is the regular representation of S, or if T is a Boolean inverse meet-semigroup and S is closed under finite meets, then $K\langle S \rangle \to K\langle T \rangle$ is one-to-one.
- Has to do with so-called transfer properties in lattice theory.
Embedding properties of $K\langle S \rangle$

- For S a sub-BIS (↔ sub-bias) of T, the canonical map $K\langle S \rangle \to K\langle T \rangle$ may not be one-to-one.
- Nevertheless, in a number of cases, it is one-to-one.
- For example, if T is the regular representation of S, or if T is a Boolean inverse meet-semigroup and S is closed under finite meets, then $K\langle S \rangle \to K\langle T \rangle$ is one-to-one.
- Has to do with so-called transfer properties in lattice theory (getting from $K \leftrightarrow \text{Id} L$ to $K \leftrightarrow L$).
The canonical map $\text{Typ} S \rightarrow V(K\langle S \rangle)$

- For idempotent matrices a and b from a ring R, let $a \sim b$ hold if $\exists x, y$, $a = xy$ and $b = yx$ (*Murray - von Neumann equivalence*).
The canonical map $\text{Typ} \, S \to V(K\langle S \rangle)$

- For idempotent matrices a and b from a ring R, let $a \sim b$ hold if $\exists x, y, a = xy$ and $b = yx$ (*Murray-von Neumann equivalence*).
- MnV classes can be added, *via* $[x] + [y] = [x + y]$ provided $xy = yx = 0$.
The canonical map $\text{Typ } S \to V(K\langle S \rangle)$

- For idempotent matrices a and b from a ring R, let $a \sim b$ hold if $\exists x, y$, $a = xy$ and $b = yx$ (*Murray - von Neumann equivalence*).
- MvN classes can be added, via $[x] + [y] = [x + y]$ provided $xy = yx = 0$.
- $V(R) = \{[x] | x \text{ idempotent matrix from } R\}$, the nonstable K-theory of R. It is a conical commutative monoid.
The canonical map \(\text{Typ} \ S \to V(K\langle S \rangle) \)

- For idempotent matrices \(a \) and \(b \) from a ring \(R \), let \(a \sim b \) hold if \(\exists x, y, a = xy \) and \(b = yx \) (Murray-von Neumann equivalence).
- MnV classes can be added, via \([x] + [y] = [x + y]\) provided \(xy = yx = 0\).
- \(V(R) = \{[x] \mid x \text{ idempotent matrix from } R\} \), the nonstable K-theory of \(R \). It is a conical commutative monoid.

Proposition (W 2015)
The canonical map $\text{Typ } S \to V(K\langle S \rangle)$

- For idempotent matrices a and b from a ring R, let $a \sim b$ hold if there exist x, y such that $a = xy$ and $b = yx$ (Murray - von Neumann equivalence).
- MnV classes can be added, via $[x] + [y] = [x + y]$ provided $xy = yx = 0$.
- $V(R) = \{ [x] | x \text{ idempotent matrix from } R \}$, the nonstable K-theory of R. It is a conical commutative monoid.

Proposition (W 2015)

Let S be a BIS and let K be a unital ring. Then there is a unique monoid homomorphism $f : \text{Typ } S \to V(K\langle S \rangle)$ such that $f(x/\mathcal{D}) = [x]_{K\langle S \rangle}$ for all $x \in S$.

The canonical map $\text{Typ } S \rightarrow V(K\langle S \rangle)$

- For idempotent matrices a and b from a ring R, let $a \sim b$ hold if $\exists x, y, a = xy$ and $b = yx$ (*Murray - von Neumann equivalence*).
- MVN classes can be added, via $[x] + [y] = [x + y]$ provided $xy = yx = 0$.
- $V(R) = \{[x] \mid x \text{ idempotent matrix from } R\}$, the nonstable K-theory of R. It is a conical commutative monoid.

Proposition (W 2015)

Let S be a BIS and let K be a unital ring. Then there is a unique monoid homomorphism $f : \text{Typ } S \rightarrow V(K\langle S \rangle)$ such that $f(x/\mathcal{D}) = [x]_{K\langle S \rangle}$ $\forall x \in S$.

- There are counterexamples where f is neither one-to-one, nor onto, even for K a field.
The canonical map $\text{Typ } S \to V(K\langle S \rangle)$

- For idempotent matrices a and b from a ring R, let $a \sim b$ hold if $\exists x, y$, $a = xy$ and $b = yx$ (Murray-von Neumann equivalence).

- MvN classes can be added, via $[x] + [y] = [x + y]$ provided $xy = yx = 0$.

- $V(R) = \{[x] \mid x \text{ idempotent matrix from } R\}$, the nonstable K-theory of R. It is a conical commutative monoid.

Proposition (W 2015)

Let S be a BIS and let K be a unital ring. Then there is a unique monoid homomorphism $f : \text{Typ } S \to V(K\langle S \rangle)$ such that $f(x/\mathcal{D}) = [x]_{K\langle S \rangle}$ $\forall x \in S$.

- There are counterexamples where f is neither one-to-one, nor onto, even for K a field.

- Question: does $\text{Typ } S \cong V(\mathbb{Z}\langle S \rangle)$?