Lecture 4

Let E be a monoidal category. An algebra or a monoid in E is an object A with maps

$$m : A \otimes A \to A$$
$$e : I \to A$$

satisfying associativity and unit equations. Remember that in the category of vector spaces $I = k$, and a map $k \to A$ is the same thing as an element of A.

In V^e, we get the familiar notion of k-algebra.

Ex. Let M be a monoid or group. Let $k[M]$ be the vector space with M as basis. Then $k[M] \otimes k[M]$ has as basis elements of the form $m_1 \otimes m_2$ with $m_1, m_2 \in M$. So one can define a multiplication via

$$m_1 \otimes m_2 \mapsto m_1 m_2$$

so this is just the linear extension of the original multiplication of M.
EX2 Let X be a set thought of as an alphabet. Let X^* be the free monoid generated by X. So elements of X^* are words generated elements of X. Multiplication is just concatenation of words, so it determines an algebraic structure as in example 1.

But there is a second multiplication, called the **shuffle multiplication**.

A shuffle of words w_1 and w_2 is a permutation of the word w_1w_2 such that the internal orders of w_1 and w_2 are maintained.

For example, let $w_1 = \text{ab}$ and $w_2 = \text{cd}$.

The shuffles are:

- $\text{abc}d$
- $\text{ac}bd$
- $\text{ac}db$
- $\text{cd}ab$
- $\text{cac}d$
- $\text{c}dab$
- $\text{cad}b$
- $\text{c}dab$
- $\text{cd}ab$

So I can define a multiplication on $k[X^*]$ by

$$m(w_1 \otimes w_2) = \sum w$$

where w is a shuffle of w_1 and w_2.
so \(m(ab \otimes cd) = abcd + acbd + qcdb + cabd + cadb + cdbd \)

This is an associative multiplication. It's also commutative. The unit is the empty word, the unique word of length 0.

Ex 3: Path Algebras

Let \(G \) be a directed graph.

![Diagram of a directed graph with vertices and edges labeled.]

Let \(P \) be the set of all directed paths. Consider \(k[P] \)

Define a multiplication by path concatenation.

So \(m(P_1 \otimes P_2) = \begin{cases}
0 & \text{if end point of } P_1 \text{ is not starting point of } P_2 \\
\text{path concatenation} & \text{if } \text{starting point of } P_1 \text{ is } \text{ending point of } P_2
\end{cases} \)

Here are 2 paths:

- \(fab \) is a path
- \(ghh \) is a path

The ending point of \(ghh \) is the starting point of \(ghh \).
It's easy to see this is an associative multiplication.
But what about units? Discuss.

EX 4 : $M_n(\mathbb{R})$

EX 5 and 6 : The complex numbers and the quaternions are algebras over \mathbb{R}.

etc. Many books on this subject.

Representations of algebras

First the traditional case.

Let k be a field and A a k-algebra. A representation of A is a k-vector space M and a map

$p : A \otimes M \to M$ s.t.

1) $\forall m \in M , 1_A \otimes m = m$
2) $\forall a_1, a_2 \in A, m \in M \Rightarrow a_1 \cdot (a_2 \cdot m) = (a_1 a_2) \cdot m$

We say A acts on M and M is an A-module.

Categorial definition

Let \mathbf{C} be a monoidal category. Let

$(A, m : A \otimes A \to A, e : I \to A)$ be in \mathbf{C}.
This gives us a category A-mod. Is it monoidal? Discuss.

A morphism of A-modules $f: M \to N$ is a map such that:

$M \otimes_A \text{Hom}(M, N) \to N$.

An A-module $p: A \otimes M \to M$ is an object M and a map $p: A \otimes M \to M$ (ignoring associativity).
Categorical Motto: If something is worth doing, it is worth doing backwards.

Coalgebras: We'll focus on the vector space case.

A \(k \)-coalgebra is a vector space \(C \) and maps

\(\Delta : C \rightarrow C \otimes C \), \(\eta : C \rightarrow k \)

s.t.\[
\begin{align*}
\Delta & : C \rightarrow C \otimes C \\
\eta & : C \rightarrow k \\
\Delta \otimes \text{id} & : C \rightarrow C \otimes C \otimes C \\
\end{align*}
\]

Notes

1. These are just the equations for \(k \)-algebra reversed.
2. Obviously this can be done in any monoidal category.

But are there examples?

1. Let \(V \) be a vector space with basis \(\{ e_0, e_1 \} \).

Define a coalgebra structure by saying for the basis:

\(\Delta(e_0) = e_0 \otimes e_0 \)

\(\eta(e_0) = 1_k \)

Note this is just for the basis.
One can't define \(\Delta(v) = v \otimes v \) for all \(v \in V \), since \(\mu \) isn't linear.

Ex 2: Let \(G \) be a finite group, or monoid. Let \(C = k[G] \). Define
\[
\Delta(g) = \sum g, g_2 \in G, \gamma(g) = \begin{cases} 1_k & \text{if } g = e \\ 0 & \text{if not} \end{cases}
\]

Ex 3: Let \(X = \{a, b, c\} \) be a set and \(X^* \) the free monoid on \(X \), as before. Let \(C = k[X^*] \).

Here are two coalgebraic structures on \(C \).

1) As in example 2, we get the **cut coalgebra**. For example, let \(w = abc \)
\[
\Delta(w) = \emptyset \otimes abc + a \otimes b c + b \otimes a c + a b \otimes c + a b c \otimes e
\]
\(\gamma(w) = \begin{cases} 1 & \text{if } w \text{ is empty word} \\ 0 & \text{if not} \end{cases} \)

2) Let \(w_1, w_2 \) be words.
Let \(\text{SHUF}(w_1, w_2) \) be the set of all shuffles of \(w_1 \) and \(w_2 \)
Define
\[\Delta(w) = \sum_{w \in \text{SHUF}(w_1, w_2)} w_1 \otimes w_2 \]
\[\eta(w) \text{ as before.} \]
This is called the de킌 coalgebra.

Ex 4: Consider \(M_n(k) \) the space of all \(n \times n \) matrices. It has as its basis \[\{e_{i,j}\}_{1 \leq i,j \leq n} \]
Define a coalgebra structure by
\[\Delta(e_{i,j}) = \sum_{1 \leq p \leq n} e_{i,p} \otimes e_{p,j} \]
\[\eta(e_{i,j}) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \]
Thus, it is the matrix coalgebra.

Ex 5: Let \(P \) be a poset. \(P \) is locally finite if \(\forall x, y \in P \), the interval \[[x, y] = \{ z \in P | x \leq z \leq y \} \]
is finite.
Let P be a locally finite poset. Let T be the set of intervals of P

$$T = \left\{ [x, y] \mid x \leq y \right\}$$

Let $C = k[T]$. Define

$$\Delta([x, y]) = \sum_{x \leq z \leq y} [x, z] \otimes [z, y]$$

$$\eta([x, y]) = \begin{cases} 0 & \text{if } x \neq y \\ 1 & \text{if } x = y \end{cases}$$

Ex 6: Let $k<x>$ be the polynomial ring in one variable x. So it has as a basis $\{x^n\}_{n \in \mathbb{N}}$. Define a coalgebra structure by

$$\Delta(x^n) = \sum_{k=0}^{n} \binom{n}{k} x^k \otimes x^{n-k}$$

$$\eta(x^n) = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{if } n > 0 \end{cases}$$

This is the divided power coalgebra.

Ex 7: If V is a vector space, let V^* be the dual space,

$$V^*$$
Thm! If V, W are finite-dimensional vector spaces, then

$$(V \otimes W)^* \cong V^* \otimes W^*$$

Why? There is a natural transformation

$$V^* \otimes W^* \rightarrow (V \otimes W)^*$$

$H(f \otimes g)(v \otimes w) = f(v)g(w)$

It is injective and $\dim (V^* \otimes W^*) = \dim ((V \otimes W)^*)$, it is an iso.

So let A be a finite-dimensional algebra. Let $C = A^*$. It's a coalgebra

$$m^* : A^* \rightarrow (A \otimes A)^* \cong A^* \otimes A^*$$

Note contravariance of $(_)^*$

$$e^* : A^* \rightarrow k^* \cong k$$

Coalgebras are important in combinatorics. See work of Giancarlo Rota
Let \((C, \Delta, \eta)\) be a coalgebra.

A \(C\)-comodule is a vector space \(M\) and a map

\[\delta : M \to C \otimes M \text{ s.t.} \]

\[\delta \downarrow \quad \downarrow \text{id} \otimes \delta \]

\[C \otimes M \to C \otimes C \otimes M \]

\[\Delta \otimes \text{id} \]

This makes sense in any monoidal category.

A map of \(C\)-comodules is a map

\[f : M \to N \text{ s.t.} \]

\[\delta \downarrow \quad \downarrow f \]

\[C \otimes M \to C \otimes N \]

\[\text{id} \otimes f \]

So it's a category. But for monoidal structure we need more.