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And now for something completely different

Categorical proof theory begins with the idea of forming a
category whose objects are formulas in a given logic and
whose arrows are proofs.

Then we study the resulting category to determine its
structure. Typically the category will be free in a certain sense.

As a simple example, in intuitionistic logic, conjunction takes
on the form of a categorical product and disjunction takes on
the form of a coproduct.

Closed structure (internal homs) provides a model of logical
implication.

In general, logical connectives become functors and inference
rules will become natural transformations.

Categories with the same structure can then be considered as
models of that logical system.
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Intuitionistic logic

Began from philosophical concerns (Brouwer).

Only constructive proofs allowed, so no proof by contradiction
or law of excluded middle.

To prove ∃x .ϕ(x), I have to say what x is and prove it
satisfies ϕ.

To prove A ∨ B, I have to specify one of the two and prove it.

No longer have that ¬¬A = A.

Philosophical concerns aside, the proof system is much better
behaved than classical logic. The villain is the equation
¬¬A = A.
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Linear Logic

Linear logic (J.-Y. Girard) provided a great new logic for
consideration under this framework.

Categories of (topological) vector spaces and representations
of Hopf algebras can be viewed as models of linear logic.

In linear logic, conjunction behaves like a tensor product of
vector spaces or of representations.

Linear logic provides a natural framework for studying
noncommutative logic, i.e. logics where A and B does not
imply B and A.

Linear logic has had many applications in, for example,
computer science and linguistics. In the latter,
noncommutative logics are particularly important.
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Categorical Proof Theory I

We use sequent calculus as our basic proof system. A sequent
is something of the following form with the ` representing
logical entailment:

Γ ` A

Here Γ is a finite list of formulas (the premises) in our logic
and A is a single formula (the conclusion).

Sequents are constructed and manipulated using inference
rules. Here are three examples:

Γ ` A ∆ ` B
Γ,∆ ` A ∧ B

∧R

Γ,A ` B

Γ ` A⇒ B
⇒ R
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Categorical Proof Theory II

Γ,A,B,∆ ` C

Γ,A ∧ B,∆ ` C
∧L

Every logical connective has a left and right inference rule,
explaining how they are introduced to the left or right of the
turnstile.

Proofs are built inductively in the shape of a tree with the
identity sequent a ` a (where a is an atomic formula) as the
leaves:

Proofs are strung together via the cut rule:

∆ ` A Γ,A ` B

Γ,∆ ` B
CUT
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Categorical Proof Theory III-Structural Rules

These rules are basically bookkeeping rules and allow us to manage
premises:

Exchange says we can rearrange the order of our premises as
we like (σ is a permutation):

Γ ` A
σ(Γ) ` A

Ex

Contraction says that it is pointless to have duplicate
premises:

Γ,A,A ` B

Γ,A ` B
Con

Weakening says that you can add additional premises.

Γ ` B
Γ,A ` B

Weak
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Categorical Proof Theory IV-The Category of Proofs

This sequent calculus system for the connectives ∧,⇒ can be
turned into a category whose arrows are formulas and whose
objects are equivalence classes of proofs.

The Gentzen cut-elimination theorem says that if a sequent is
provable, it is provable without using the cut-rule.

The categorical reformulation says that every proof is
equivalent to a cut-free proof of the same sequent.

Theorem

The category arising as above is the free cartesian closed category
generated by the atomic formulas in the logic. Conjunction
becomes the categorical product and implication becomes its right
adjoint:

Hom(A× B,C ) ∼= Hom(B,A⇒ C )

Richard Blute University of Ottawa Hopf algebras and the Logic of Tensor Categories



Categorical Proof Theory IV-Coalgebra Structure

So a sequent of the form Γ ` A is interpreted as a map
×Γ −→ A.

To model Contraction

Γ,A,A ` B

Γ,A ` B
Con

I use the canonical map ∆: A→ A× A

To model Weakening:

Γ ` B
Γ,A ` B

Weak

I use the canonical map A→ 1 where 1 is the terminal object.

By universality, these maps satisfy the cocommutative
coalgebra equations.
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Categorical Proof Theory V-Models

Thus any cartesian closed category can be seen as a model of
this logic. In particular, the category of G -sets is cartesian
closed.

Since the category of proofs is free, once I assign a G -set to
the atomic formulas, I obtain a unique functor from the
category of proofs to G -Sets.

H. Läuchli developed a notion of abstract proof theory where
a proof bundle was defined to be a G -set, where G was the
group of integers. An abstract proof was a fixed point under
the G -action. This turns out to be a complete semantics for
intuitionistic logic.

This was updated for linear logic by RB and Phil Scott. In the
linear framework, you get a stronger notion called full
completeness.
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Linear Logic

Linear logic begins with a reinterpretation of sequent calculus.
We consider the sequent Γ ` A as expressing a resource
requirement. So the sequent is expressing that one needs Γ
inputs to produce an output of A. Linear logic is a
resource-sensitive logic.

From this point of view, the rules of contraction and
weakening are clearly wrong:

Γ,A,A ` B

Γ,A ` B
Con

Γ ` B
Γ,A ` B

Weak
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Linear Logic II

When I remove those two rules I get (a fragment of) linear
logic, called multiplicative linear logic.

Each object loses its canonical coalgebra structure.

As a result, conjunction behaves more like a tensor of vector
spaces and in fact, we denote the conjunction of linear logic
by ⊗. The corresponding categories are symmetric monoidal
closed categories

So models of this fragment are categories of vector spaces,
Banach spaces, finite-dimensional Hilbert spaces, and various
other categories of topological vector spaces.
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Linear Logic III-Handling negation

Linear logic allows one to have classical negation in your
categorical models, i.e. A ∼= ¬¬A. In any symmetric monoidal
closed category, I have a canonical map (k being the unit for
the tensor, i.e. the base field).

ρ : A −→ (A⇒ k)⇒ k = ¬¬A

An object for which ρ is an iso is called reflexive. A category
for which all objects are reflexive is called ∗-autonomous.

These correspond to models where we have a classical-style
negation. In these models, we can write all formulas on the
right of the turnstile: ` Γ. Such models are harder to come by.
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Linear Logic IV-Stereotype spaces [S.S. Akbarov]

Definition

A stereotype space is a topological vector space over the complex
numbers such that the above map into the second dual space is an
isomorphism of topological vector spaces. Here the dual space is
defined as the space of all linear continuous functionals endowed
with the topology of uniform convergence on totally bounded sets.

Theorem

The category of stereotype spaces is ∗-autonomous.

Theorem

A topological vector space is a stereotype space if and only if it is
locally convex, pseudo-complete, and pseudo-saturated.

So this is an extremely wide class of spaces, including Fréchet
spaces.
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Linear Logic IV-Reintroducing contraction and weakening

It’s very important that a logic have sufficient ”expressive
power” to be of use as a logic. You need to be able to encode
all of mathematics within the logic.

The fragment we have discussed thus far is insufficient for this
purpose. You have to reintroduce contraction and weakening,
but we’ll do so in a controlled fashion.

To each formula A, we will associate a special formula !A.
This formula should be thought of as a machine for creating
as many copies of A as needed. Here are the rules:

Γ, !A, !A ` B

Γ, !A ` B
Con

Γ ` B
Γ, !A ` B

Weak
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Linear Logic V-The functor !

Additional rules to introduce these formulas:

Γ,A ` B

Γ, !A ` B
Der

!Γ,` B

!Γ,`!B
Sto

These rules make the functor ! a comonad (cotriple) such that
each object !A has a coalgebra structure. These are called Seely
categories. One way to ensure this is to have a category with
products and the equation:

!(A× B) ∼=!A⊗!B
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Noncommutative logic I

When we eliminate the exchange rule:

Γ ` A
σ(Γ) ` A

Ex

we obtain noncommutative logic.

The idea of non commutative logic originated with the work
of Jim Lambek on categorial grammars, a form of natural
language syntax. This is a highly noncommutative logic (the
order of words matters!).

For a non commutative tensor, you need two implications
corresponding to adjoints to A⊗− and −⊗ A. We’ll denote
these by ⇒,⇐
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Noncommutative logic II-Categorial Grammar

We have two inference rules (Using the categorial grammar
notation)

A⇐ B,B

A

B,B ⇒ A

A

We have two basic types N=Noun and S=Sentence

Words in your grammar are assigned types:

Patriots:N

the Super Bowl:N (Pretend this is one word!)

won:(N⇒ S)⇐ N (type of a transitive verb)
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More Categorial Grammar

To determine whether the string of words ”Patriots won the Super
Bowl” is a sentence, apply the following deduction:

Patriots won the Super Bowl

N

(N⇒ S)⇐ N N

N⇒ S
S

Since the conclusion is S, it is a sentence.
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Models of noncommutative logic

The models of noncommutative linear logic (and hence categorial
grammar) are monoidal biclosed categories. (biclosed means
having both the implications)

Hopf algebras yield very canonical examples:

Theorem

Let H be a noncocommutative Hopf algebra with bijective
antipode. Then the category of left H-modules is a monoidal
biclosed category. V ⇒W and W ⇐ V are both the space of
linear maps with actions given by:

(hf )(v) =
∑
(h)

h1f (Sh2v)

(hf )(v) =
∑
(h)

h2f (S−1h1v)

To have involutive negation, we could restrict to finite-dimensional
modules or work with stereotype spaces.
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Varieties of noncommutative logic

Realizing that Hopf algebras provide models leads to thinking
about variants of noncommutativity.

Theorem

Let H be a Hopf algebra such that S2 = id. Then for any module
V , we have V ⇒ k = k ⇐ V . So in terms of logic, we get
noncommutative logic with only one negation.

Logically this corresponds to noncommutative linear logic with the
following restricted version of the exchange rule:

` Γ
` σ(Γ)

Cyc− Ex

where σ is a cyclic permutation.
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Shuffle Hopf Algebra

Let X be a set and X ∗ the free monoid on X . Let H = k[X ∗].
Define a Hopf algebra structure by:

Multiplication: w ⊗ w ′ 7→
∑

v∈SHUF(w ,w ′)

v

Comultiplication: w 7→
∑

vv ′=w

v ⊗ v ′

Antipode: w 7→ (−1)|w |w

This is a Hopf algebra with involute antipode and hence a model
of cyclic noncommutative linear logic.
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Full Completeness (RB, Scott)

Using a notion of topological vector space due to Lefschetz which
yields a ∗-autonomous category, we looked at natural
transformations between formulas in the multiplicative fragment
which were invariant under the action of the shuffle Hopf algebra.
This was a vector space which we called the proof space.

Theorem

Given a sequent of linear logic, its proof space has the
representations of proofs as a basis.

This is a strong form of completeness theorem, called full
completeness. Ordinary completeness characterizes provability, we
actually characterize the proofs.
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Differential Linear Logic I

Given any comonad !, one can always form something called
the coKleisli category. An arrow from A to B is an arrow from
!A to B in the base category. You can use the structure of the
comonad to define composition.

Differential linear logic (Ehrhard, Regnier) begins with the
idea that there should be a category of some sort of
topological vector space where one can define smoothness and
suppose there is a comonad such that the base category
consists of linear continuous maps and the coKleisli category
are the smooth maps.

This idea arose from semantic considerations. Ehrhard
constructed two models of linear logic where there is just such
a decomposition. These were the categories of Köthe spaces
and finiteness spaces. Morphisms had a representation as
power series, which could be differentiated.
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Differential Linear Logic II

The important point is that differentiation is represented as
an inference rule.

To see what the inference rule would be, consider the
following situation. I have two Euclidean spaces, X and Y ,
and a smooth map between them. In our model, it would be a
map f : !X → Y .

At a point of X , its Jacobian matrix would be a linear map
from X to Y . So the process of taking the Jacobian is a
smooth map from X to linear maps from X to Y . This
suggests an inference rule of the following form:

!X ` Y
!X ` X ⇒ Y
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Differential Linear Logic III

So a differential category (RB, Cockett, Seely) is a model of
linear logic modelling an inference rule of the above form
satisfying basic differential identities, expressed coalgebraically.

The derivative of a constant is 0.

The derivative of a linear function is constant.

Leibniz rule (Product rule).

Chain rule.

The goal was to find models where the notion of smoothness
matched the standard notion as much as possible.

Richard Blute University of Ottawa Hopf algebras and the Logic of Tensor Categories



Convenient vector spaces (Frölicher, Kriegl)

Theorem

Let E be a locally convex vector space. The following statements
are equivalent:

If c : R→ E is a curve such that ` ◦ c : R→ R is smooth for
every linear, continuous ` : E → R, then c is smooth.

Every Mackey-Cauchy sequence converges.

Any smooth curve c : R→ E has a smooth antiderivative.

Definition

Such a vector space is called a convenient vector space.
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Convenient vector spaces II: Key points

The category of convenient vector spaces and continuous
linear maps forms a symmetric monoidal closed category. The
tensor is a completion of the algebraic tensor. There is a
convenient structure on the space of linear, continuous maps
giving the internal hom. So we have a symmetric monoidal
closed category.

Then we can define:

Definition

A function f : E → F with E ,F being convenient vector spaces is
smooth if it takes smooth curves in E to smooth curves in F .

We will denote the algebra of smooth functions from E to F
by C∞(E ,F ) and the real-valued functionals on E by C∞(E ).
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Convenient vector spaces III: More key points

The category of convenient vector spaces and smooth maps is
cartesian closed. This is an enormous advantage over
Euclidean space, as it allows us to consider function spaces.

There is a comonad such that the smooth maps form the
coKleisli category:

Define a map δ (Dirac delta function) as follows:

δ : E → Con(C∞(E ),R) δ(x)(f ) = f (x)

Then we define !E to be the Mackey closure of the span of the set
δ(E ).

Theorem (Frölicher,Kriegl)

! is a comonad.

Each object !E has canonical coalgebra structure.
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Convenient vector spaces IV: It’s a model

Theorem (Frölicher,Kriegl)

The category of convenient vector spaces and smooth maps is the
coKleisli category of the comonad !.

Furthermore, we have an operator, which is just a directional
derivative, which captures the differentiation inference rule.

Theorem (RB, Ehrhard, Tasson)

Con is a differential category.
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