Lenses: an introductory view

Bob Rosebrugh

Ottawa Logic Seminar / 2020-11-12
Outline

- Bidirectional transformations
- Lenses: symmetric and asymmetric
- Categories of lenses
- Bicategories of lenses
- Recent developments
 - Multiary lenses (and a different composition)
 - Learners
Bidirectional transformations (BX)

“some way of specifying algorithmically how consistency should be restored” - P. Stevens 2005

Precedents:

► Database view update
 ► Database a set of tables with columns eg Staff, Projects
 ► View is query(ies) eg SELECT Name, Role FROM Staff, Projects WHERE ...
 ► Propagate a view state update to the database??
 ► Can be ill-posed (no/non-unique solution)

► Model driven development
 ► Developers work on separate models, focussing on the concerns at hand
 ► When one model is edited, others should be updated to restore consistency
 ► eg Object–relational mapping: business logic in object-oriented language with data layer stored in a relational database.
Relational: sets X, Y of model states, consistency relation $R \subseteq X \times Y$

restorers $f : X \times Y \rightarrow Y$ and $b : X \times Y \rightarrow X$

subject to correctness/Hippocraticness

Triple-Graph-Grammars: two graphs for meta-models, with triples relating nodes across them, and rules (grammar) for how they evolve multiple implementations and applications (since 1990's)

Lenses (set based): defined by Pierce et al, 2004...

Lenses (categorical): studied by J & R, Diskin et al, 2008...
Consider model domains \(X, Y \)… of \textit{model states}

Model states \(X, Y \) might be: elements of a set, of an order, objects of a category

\textit{Synchronization data} (various encodings) specifies \textit{consistency} between an \(X \) state and a \(Y \) state

\textbf{Lens} \(L : X \rightarrow Y \) implements \textit{Bidirectional Transformation} and has both:

\begin{itemize}
 \item \textit{synchronization data} and
 \item \textit{consistency restoration} or \textit{re-synchronization} operator(s) responding to state change.
\end{itemize}
Symmetric and asymmetric cases arise with different, but related, motivation...

Symmetric: Concurrent models with bidirectional (two-way) re-synchronization: model domains X and Y peers motivating example: database interoperation

Asymmetric: Only one non-trivial restoration operator returns X (global) state change after Y (local) change: motivating example: database view updates
Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y denoted by $R : X \leftrightarrow Y$.

Suppose X synchronized with Y by $R : X \leftrightarrow Y$, then given an update from state X (with target X', say) a symmetric lens delivers an update to Y (target Y', say) and, re-synchronization $R' : X' \leftrightarrow Y'$.

\[
\begin{array}{ccc}
X & \xleftarrow{R} & Y
\end{array}
\]
Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y denoted by $R : X \leftrightarrow Y$.

Suppose X synchronized with Y by $R : X \leftrightarrow Y$, then given an update from state X (with target X', say) a symmetric lens delivers an update to Y (target Y', say) and, re-synchronization $R' : X' \leftrightarrow Y'$.

\[X \xleftarrow{R} Y \]
\[\alpha \downarrow \]
\[X' \]
Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y denoted by $R : X \leftrightarrow Y$.

Suppose X synchronized with Y by $R : X \leftrightarrow Y$, then given an update from state X (with target X', say) a symmetric lens delivers an update to Y (target Y', say) and, re-synchronization $R' : X' \leftrightarrow Y'$.

\[
\begin{array}{c}
X \\ \downarrow \alpha \\
X'
\end{array} \quad \xrightarrow{R} \quad \begin{array}{c}
Y \\ \downarrow \beta \\
Y'
\end{array}
\]
Symmetric lens

Consistency data (synchronization) for states X in X and Y in Y is denoted by $R : X \leftrightarrow Y$.

Suppose X synchronized with Y by $R : X \leftrightarrow Y$, then given an update from state X (with target X', say) a symmetric lens delivers an update to Y (target Y', say) and, re-synchronization $R' : X' \leftrightarrow Y'$.

\[
\begin{array}{c}
X \xleftarrow{\alpha} X' \xrightarrow{R'} Y' \\
Y \xrightarrow{\beta} \end{array}
\]

\[
\begin{array}{c}
X \xleftarrow{\alpha} X' \xrightarrow{R} Y \\
Y \xrightarrow{\beta} \end{array}
\]
Symmetric lens

Symmetrically, suppose $R : X \leftrightarrow Y$, then given an update from Y (with target Y')
symmetric lens delivers update of X in X and, re-synchronization $R'' : X' \leftrightarrow Y'$.

\[
\begin{array}{c}
X \xleftarrow{\delta} \xrightarrow{b} Y \\
\downarrow \delta \quad \downarrow \gamma \\
X' \xleftarrow{____} \xrightarrow{____} Y'
\end{array}
\]

- Considered by Hoffman, Pierce, Wagner for X, Y... sets
- More recently Diskin et al. for X, Y... categories
- Also studied by J & R
Symmetric lens

Formally, taking categories X, Y for model domains:

A symmetric lens $L = (\delta_X, \delta_Y, f, b)$ from X to Y

has a span of sets

$$\delta_X : X_0 \leftarrow R_{XY} \rightarrow Y_0 : \delta_Y$$

where elements of R_{XY} – “cors” – are denoted $R : X \leftrightarrow Y$ and

forward and backward propagations f, b denoted

$$\begin{array}{ccc}
X & \xleftarrow{R} & Y \\
\downarrow \alpha & f & \downarrow \beta \\
X' & \xleftarrow{R'} & Y'
\end{array} \quad \begin{array}{ccc}
X & \xleftarrow{R} & Y \\
\downarrow \delta & b & \downarrow \gamma \\
X' & \xleftarrow{R''} & Y'
\end{array}$$

where $f(\alpha, R) = (\beta, R')$ and $b(\gamma, R) = (\delta, R'')$

and both propagations respect identities and composition.
Suppose $X = Y = \text{set}^2$ are model domains (we’ll interpret below)

Say X, Y objects of set2 have synchronization R just when $X_1 = d_1 X = d_0 Y = Y_0$,
Symmetric Lens: Example

Suppose \((f_0, f_1) : X \rightarrow X'\) an arrow in \(X\), as in

\[
\begin{array}{c c c c c}
X_0 & f_0 & X' & R : X_1 = Y_0 & Y_0 \\
X & X_0 & X' & & Y \\
X_1 & f_1 & X' & X_1' & Y_1
\end{array}
\]

Forward propagation requires a new arrow \(Y \rightarrow Y'\) say, and a new synchronization \(R'\)
Symmetric Lens: Example

Construct the new arrow \((f_1, g) : Y \rightarrow Y'\) using the pushout, and the new synchronization is \(R' : X'_1 = d_0 Y'\):

\[
\begin{array}{cccccc}
X_0 & \xrightarrow{f_0} & X'_0 & \xrightarrow{R : X_1 = Y_0} & Y_0 & \xrightarrow{f_1} & X'_1 \\
X & \downarrow & X' & \downarrow & Y & \downarrow & Y' \\
X_1 & \xleftarrow{f_1} & X'_1 & \xleftarrow{R' : X'_1 = d_0 Y'} & Y_1 + x_0 X'_1 \\
\end{array}
\]

Back propagation uses composition.
Symmetric Lens: Example

For example: a left hand db state assigns name to address; a right hand state assigns address to city; so a synchronization is an address matching

name/address update propagates to a right hand update, also creating a new city set: the pushout
Symmetric Lens: Composition and equivalence

- Symmetric lenses compose by composing propagations; pullbacks of δ’s provide corrs for a composite
- *However* two symmetric lenses on the same model domains *may* have the same propagation behaviour i.e. bidirectional transformation implementation

- Should they be distinguished? Depends on preference, and
- J & R defined a congruence relation on lenses $X \longrightarrow Y$
Symmetric Lens: Equivalence

Let \(L, L' \) have corrs \(R_{XY} \) and \(R'_{XY} \).
Say \(L \equiv L' \) if there is relation \(\sigma \) between corr sets so that:

- \(\sigma \) compatible with the \(\delta \)'s
- \(R\sigma R' \) implies \(Y \) updates of \(f(\alpha, R) \) and \(f'(\alpha, R') \) equal and new corrs are \(\sigma \) related (similarly for b)
- \(\sigma \) total in both directions

Theorem
Equivalence classes of symmetric lenses are arrows of a category, denoted \(SLens \).
Symmetric lenses and Mealy morphisms

Bob Paré observed that
\(f, b \) are precisely (cat) **Mealy morphisms**: \(f : X \to Y \) and \(b : Y \to X \)

Bryce Clarke uses this for two important points:

First, composing via span (of sets) composition, Mealy morphisms are 1-cells of a bicategory **Meal** where a 2-cell is:

A map of Mealy morphisms i.e. a span morphism \(\tau \):

\[
\begin{array}{ccc}
X_0 & \xleftarrow{\delta_X} & \xrightarrow{\delta_Y} & Y_0 \\
\gamma & \downarrow \tau & & \\
S & \xleftarrow{\delta'_X} & \xrightarrow{\delta'_Y} & R
\end{array}
\]

compatible with the operations
Symmetric lenses and Mealy morphisms

Second, a Mealy morphism $f : X \rightarrow Y$ has image category $\hat{\mathcal{R}}$ with:
- objects: \mathcal{R}
- morphisms: pairs $(\alpha, R) : R \rightarrow R'$ where $f(\alpha, R) = (\beta, R')$

And factors (in Meal) as $X \rightarrow \hat{\mathcal{R}} \rightarrow Y$ using f, moreover

Proposition

Given a Mealy morphism $f : X \rightarrow Y$ there is a span of functors

![Diagram](attachment:image.png)

where $\hat{\delta}_X$ is a discrete opfibration and \hat{f} is a functor
Symmetric lenses and Mealy morphisms

Symmetric lens $X \rightarrow Y$ can be represented as a pair of Mealy morphisms:

\[
\begin{array}{ccc}
\hat{R}^+ & \xrightarrow{\hat{f}} & Y \\
\delta_X & \downarrow & \\
X & \downarrow & \\
\hat{R}^- & \xleftarrow{\hat{b}} & X
\end{array}
\]

- will return to this, but for now...

- giving 2-cells by corresponding maps of Mealy morphisms defines a (hom) category $\text{SymLens}(X, Y)$
Asymmetric lens: Background

Arose as strategy for studying the database View Update Problem, indeed long before symmetric lenses.

▶ Defined equationally by B. Pierce et al for sets X, Y

▶ S. Hegner had axiomatics for orders X, Y, a special case of...

▶ Lenses for X, Y categories (defined by J & R) and:
 ▶ defined lens in category C with finite products
 ▶ characterized lens as algebra for a monad on C/Y
 ▶ generalized to a categorical version (c-lenses).

▶ Diskin et al. defined (related) categorical version that we will call asymmetric lenses

Set based lenses also arose (1980’s) in considering “store shapes” (F. Oles thesis)
where there is a similar update problem
Asymmetric lens: Motivation

Database views consider a *Get* process $G : X \rightarrow Y$ from global database states X to view states Y.

For global state X *synched* with view state $Y = GX$: when can update to Y, e.g. formal insertion β *lift through* G to global update α, and compatibly – meaning $\beta = G(\alpha)$? This is (an instance of) the *View Update Problem*.

\[
\begin{align*}
 X & \overset{G}{\longrightarrow} Y \\
 \downarrow\alpha & \quad \quad \quad \quad \quad \downarrow\beta \\
 X' & \overset{G}{\longrightarrow} Y'
\end{align*}
\]
Asymmetric lens

Given an *update* from state $Y = GX$ in Y (with target Y') the asymmetric lens delivers (by a “Putback” process P) an *update* to X in X (with target X', say) *along with compatible re-synchronization* data, that is $Y' = GX'$.

$$X \xrightarrow{G} Y$$
Asymmetric lens

Given an update from state $Y = GX$ in Y (with target Y') the asymmetric lens delivers (by a “putback” process P) an update to X in X (with target X', say) along with compatible re-synchronization data, namely $Y' = GX'$.

\[
\begin{array}{c}
X \xrightarrow{G} Y \\
\downarrow^\beta \\
Y'
\end{array}
\]
Asymmetric lens

Given an *update* from state $Y = GX$ in Y (with target Y') the asymmetric lens delivers (by a “putback” process P) an *update* to X in X (with target X', say) *along with compatible re-synchronization* data, namely $Y' = GX'$.

\[
\begin{array}{ccc}
X & \xrightarrow{G} & Y \\
\downarrow{\alpha} & & \downarrow{\beta} \\
X' & \leftarrow{P} & Y'
\end{array}
\]
Asymmetric lens

Given an *update* from state \(Y = GX \) in \(Y \) (with target \(Y' \)) the asymmetric lens delivers (by a “putback” process \(P \)) an *update* to \(X \) in \(X \) (with target \(X' \), say) *along with compatible re-synchronization* data, namely \(Y' = GX' \).

\[
\begin{array}{ccc}
X & \xrightarrow{G} & Y \\
\downarrow{}_{\alpha} & & \downarrow{}_{\beta} \\
X' & \xleftarrow{P} & Y'
\end{array}
\]
Asymmetric lens

The formal axioms (Diskin et al) are:

An asymmetric lens is \(L = (G, P) \)
where \(G : X \to Y \) is the “Get” functor and \(P \) is the “Put(back)” function and the data \(G, P \) satisfy:

(i) PutGet: \(GP(X, \beta) = \beta \)
(ii) PutId: \(P(X, 1_{GX}) = 1_X \)
(iii) PutPut:

\[
\begin{align*}
X & \xrightarrow{G} Y \\
/ & \quad \downarrow \alpha \quad \uparrow P \quad \downarrow \beta \\
P(X, \beta') & = X' \quad -- \rightarrow Y' \\
/ & \quad \downarrow \alpha' \quad \uparrow P \quad \downarrow \beta' \\
X'' & \xrightarrow{G} Y''
\end{align*}
\]

or

\[
P(X, \beta' \beta : GX \to Y' \to Y'') = P(X', \beta' : GX' \to Y'') P(X, \beta : GX \to Y')
\]
Asymmetric lens: examples

- Given a split op-fibration $G : X \rightarrow Y$:
 Just define $P(X, \beta)$ to be the op-Cartesian arrow.

- For example, $d_0 : \text{set}^2 \rightarrow \text{set}$ or $d_1 : \text{set}^2 \rightarrow \text{set}$

- Or indeed for C, D small categories a functor $V : C \rightarrow D$ is fully-faithful
 iff $(R \text{ L-W}) V^* : \text{set}^D \rightarrow \text{set}^C$ is an opfibration

- Similar op-fibration characterization holds for small, lex C, D and lex functors
Asymmetric lens: examples

Split op-fibs called “c-lenses” by J & R and studied earlier (in the context of View Update Problem)
 ▶ defined by equations analogous to asymmetric set-lens
 ▶ algebras for a monad on cat/Y
 ▶ the Put satisfies a “least change” property

Indeed, *any* asymmetric lens is an algebra for a related *semi*-monad on cat/Y
(Clarke recently showed them to be algebras for a monad)

However: *not every* asymmetric lens is an op-fibration - there are small counterexamples
Asymmetric lens: composition and equivalence

▶ As for symmetric lenses, there is an obvious composition of asymmetric lenses and category called ALens

▶ A span of asymmetrics

\[
\begin{array}{c}
X & \xrightarrow{(G_L,P_L)} & S & \xrightarrow{(G_R,P_R)} & Y \\
\end{array}
\]

determines a symmetric lens \(X \rightarrow Y \) via:
corrs are objects of \(S \), \(\delta \)'s from Gets
\(f \) is the left leg Put \(P_L \), then the right leg Get \(G_L \)
\(b \) is the right leg Put, then the left leg Get
Asymmetric lens: composition and equivalence

- Conversely, symmetric lens $X \rightarrow Y$ determines a span of asymmetrics with:
 - head of span (the category) has objects the corrs
 - arrows are formal squares

\[
\begin{array}{ccc}
X & \xrightarrow{R} & Y \\
\downarrow{} & {} & \downarrow{} \\
X' & \xleftarrow{R'} & Y'
\end{array}
\]

Gets by projection; Puts use f, b

- J & R sought equivalence of the category SLens of symmetrics and a category of spans of asymmetrics
Asymmetric lens: composition and equivalence

- Define span equivalence (again motivated by behaviour):
- Equivalence is generated by functors Φ as in

\[
\begin{array}{ccc}
X & S & Y \\
\downarrow & \Phi & \downarrow \\
S' & (G_R,P_R) & (G'_R,P'_R) \\
\end{array}
\]

with Φ surj-on-obj and semi-monad homom (both sides)

Theorem

Equivalence classes of spans define a category SpALens; SpALens is isomorphic to SLens.
Ahman and Uustalu observed that for a lens \((G,P)\): Object function of \(G_0\) of \(G\) together with \(P\) determines what Aguiar called a cofunctor from \(Y\) to \(X\) (Note direction!!)

Cofunctors compose via their functions (axioms are ok)

Cofunctors generalize both boo functors and discrete opfibrations.
Asymmetric lens and cofunctors

- For cofunctor \((G_0, P) : Y \rightarrow X\) let \(\Lambda\) the category with:
 objects \(X_0\)
 morphisms \((X, \beta) : X \rightarrow P(X, \beta)\) for \(\beta : G_0(X) \rightarrow Y'\)

- A cofunctor \((G_0, P) : Y \rightarrow X\) defines a span of functors:

\[
\begin{array}{ccc}
X & \xleftarrow{\Lambda} & Y \\
\phi & \xlongrightarrow{} & \bar{\phi} \\
\end{array}
\]

with \(\phi\) identity on objects and \(\bar{\phi}\) a discrete opfibration
Clarke then points out:

- An asymmetric lens \((G, P) : X \to Y\) defines a commutative diagram of functors:

\[
\begin{array}{ccc}
X & \xrightarrow{G} & Y \\
\downarrow{\phi} & \searrow{\bar{\phi}} & \Lambda \\
\Lambda & \xleftarrow{\phi} & X
\end{array}
\]

with \(\phi\) identity on objects and \(\bar{\phi}\) a discrete opfibration

- Compose asymmetric lenses (seen thus) by composing the functor/cofunctor parts (giving ALens again)

- but more important from this perspective...
Spans of asymmetric lens

For category Y, the category $\text{Lens}(Y)$ has:
objects are asymmetric lenses to Y;
arrows (using the representation above) are comm diagrams:

\[
\begin{array}{c}
\Lambda & \xrightarrow{\bar{H}} & \Lambda' \\
\downarrow{\phi} & & \downarrow{\phi'} \\
X & \xrightarrow{H} & X'
\end{array}
\]

\[
\begin{array}{c}
\Lambda & \xleftarrow{H} & \Lambda' \\
\downarrow{\phi} & & \downarrow{\phi'} \\
X & \xleftarrow{G} & X'
\end{array}
\]

\[
\begin{array}{c}
\Lambda & \xleftarrow{\bar{H}} & \Lambda' \\
\downarrow{\phi} & & \downarrow{\phi'} \\
Y & \xleftarrow{G} & Y
\end{array}
\]

$\text{Lens}(Y)$ has products
Spans of asymmetric lens

- There is a forgetful functor $\text{Lens}(Y) \rightarrow \text{cat}$ sending an object to domain of G.
- The head of the pullback diagram defines the hom categories for a bicategory SpnLens.
- Morphisms of $\text{SpnLens}(X, Y)$ (2-cells of SpnLens) are span morphisms of Gets compatible with cofunctor parts.
Symmetric lens adjunctions

- There is forgetful functor $\text{Meal}(X, Y) \rightarrow \text{Span}(\text{cat})(X, Y)$ from the span representation above.
- Further, there is $\text{Meal}(Y, X) \rightarrow \text{Span}(\text{cat})(X, Y)$ by first reversing the span representation.
- The head of the pullback diagram defines the hom categories for a bicategory SymLens.
Symmetric lens adjunctions

Theorem (Clarke, ACT20 paper)

There is an adjoint triple

\[
\begin{array}{c}
\text{SymLens}(X, Y) \\
\downarrow L \\
\downarrow M \\
\downarrow R \\
\end{array}
\end{array}
\begin{array}{c}
\text{SpnLens}(X, Y) \\
\end{array}
\]

with \(R \) reflective and (hence) \(L \) coreflective

Using functor/cofunctor representations, define \(M \) on objects by

\[
\begin{array}{c}
\Lambda \\
\phi \\
\Lambda' \\
\end{array}
\end{array}
\begin{array}{c}
\phi' \\
\Lambda \\
\Lambda' \\
\end{array}
\end{array}
\begin{array}{c}
Z \\
G \\
Z \\
\end{array}
\end{array}
\begin{array}{c}
X \\
Y \\
X \\
\end{array}
\end{array}
\begin{array}{c}
Y \\
Y \\
X \\
\end{array}
\end{array}
\begin{array}{c}
\Lambda \\
G' \phi \\
\Lambda' \\
\end{array}
\end{array}
\begin{array}{c}
\Lambda \\
\Lambda \\
\Lambda' \\
\end{array}
\end{array}
\begin{array}{c}
G' \phi \\
\Lambda \\
\Lambda' \\
\end{array}
\end{array}
\begin{array}{c}
X \\
Y \\
X \\
\end{array}
\end{array}
\end{array}
\end{array}
Symmetric lens adjunctions

- The definition of R is related to the J & R construction
- The definition of L is a bit more complicated
- Using that everything is identity on objects and that the constructions are compatible with composition, he obtains:

Corollary (Clarke)

There are identity on objects pseudofunctors

\[
\begin{align*}
\text{SymLens} & \xrightarrow{L} \text{SpnLens} \\
\text{SpnLens} & \xleftarrow{M} \text{SymLens} \xrightarrow{R}
\end{align*}
\]

with L and R locally fully faithful and locally adjoint to M.
Summary (so far)

- Lenses (either flavour) model BX well
- Symmetric lenses and asymmetrics closely related via spans
- J & R: Isomorphism of categories from (classes of) symmetric lenses to spans of asymmetrics
- Using Mealy morphism and functor/cofunctor representations
- Clarke describes the bicategories and adjoint triple above
Multiary lenses

- Multidirectional transformations modelled as n-ary lenses proposed by Diskin and Konig
 - first generalize (binary) symmetric lenses – more propagations
 - also generalize spans of asymmetric lenses – to wide spans

- J & R found equivalences similar to the binary case

- Subject to some mild conditions the resulting *multiary lenses* compose via wide spans

- A multicategory of multiary lenses arises
Lenses and learners

Fong and Johnson (BX 2019) relate supervised learning algorithms to (set-based) symmetric lenses

- Goal: approximate \(f : A \to B \) by \((a, f(a))\) pairs (training data) parameterized by \(P \), then allow updates

- Learner is \((P, I, U, R) : A \to B\) with
 - \(I : P \times A \to B\) (implementation),
 - \(U : B \times P \times A \to P\) (update),
 - \(R : B \times P \times A \to A\) (request)
 (for details see their paper)

- They find faithful, symmetric monoidal functor from a category with learner arrows to a category with symmetric lens arrows
Conclusion

- Lenses implement BX with categorical precision
- Categories, bicategories (even double cats) clarify structure
- Some urls:
 - www.mta.ca/~rrosebru
 - www.comp.mq.edu.au/~mike/
- Bryce is on Twitter...