Lecture 1

Goal: Read Cartesian bicategories carefully. But we'll do so slowly and look at various other papers along the way.

Today: Bicategories

References:
1) Benabou: Introduction to Bicategories
2) Barbosa: A brief introduction to bicategories.

A bicategory consists of (Coll₁ §)

1) A set |S| of objects.
2) For each pair of objects, A, B ∈ |S|, a category $\mathcal{S}(A, B)$.
 An object of $\mathcal{S}(A, B)$ is called a \textit{1-cell}, and denoted $A \rightarrow B$.
 An arrow of $\mathcal{S}(A, B)$ is called a \textit{2-cell}.
We'll denote
\[A \xrightarrow{f} B \xrightarrow{g} C. \]

3) A composition functor
\[C : S(A,B) \times S(B,C) \rightarrow S(A,C) \]
\[f \xrightarrow{g} C \mapsto f \circ g : A \rightarrow C \text{ on objects} \]
\[f \xrightarrow{g} C \mapsto A \xrightarrow{f \circ g} C \text{ on morphisms}. \]

This is an example of pasting.

4) \(\forall A \in \mathcal{S}, \) an object \(I_A : A \rightarrow A \)

5) \(\forall A, B, C, D \in \mathcal{S}, \) an associativity isomorphism.
Make sure you understand what this is. Both legs of this square are functors, from the category
\[S(A, B) \times S(B, C) \times S(C, D) \]
to the category
\[S(A, D) \]
So a must be a natural transformation. Since it is an isomorphism, there must be a \(NT a^{-1} \) in the other direction.

6) \(\forall A, B \in \text{Set}, I \text{ need two isos} \)

\[1 \times S(A, B) \xrightarrow{I_a \times 1d} S(A, A) \times S(A, B) \]

\[S(A, B) \quad \underline{\lambda} \quad S(A, A) \times S(A, B) \]

\[S(A, B) \times 1 \rightarrow S(A, A) \times S(A, B) \]

\[S(A, B) \quad \underline{\gamma} \quad S(A, A) \times S(A, B) \]
These must satisfy coherence conditions

COHERENCE

\[S : A \rightarrow B \]
\[T : B \rightarrow C \]
\[U : C \rightarrow D \]
\[V : D \rightarrow E \]

\[
\begin{align*}
\left((S \circ T) \circ U \right) \circ V & \xrightarrow{a \circ Id} \left(S \circ (T \circ U) \right) \circ V \\
\downarrow & \\
\left(S \circ T \right) \circ (U \circ V) & \xrightarrow{a} \left(S \circ (T \circ U \circ V) \right) \\
\end{align*}
\]

\[
\begin{align*}
(S \circ T) \circ U & \xrightarrow{a} S \circ (T \circ U \circ V) \\
S \circ T \circ U & \xrightarrow{a} S \circ (T \circ U \circ V) \\
\end{align*}
\]

Alternative Presentation

A bigraph \(\Sigma \) is a diagram of sets and maps.
\[\Sigma_0 \rightarrow \Sigma_1 \rightarrow \Sigma_2 \]

s.t. 2 equations hold

Think of \(\Sigma_0 \) as O-cells, etc.

To compose, I need

\[\Sigma_2 \times \Sigma_1 \rightarrow \Sigma_2 \]

\[PB \rightarrow \Sigma_2 \]

\[\Sigma_2 \rightarrow \Sigma_1 \]

For identities, I need

\[\Sigma_0 \rightarrow \Sigma_1 \rightarrow \Sigma_2 \]

These pick out identities.

\[PB \rightarrow \Sigma_2 \]

\[\Sigma_2 \rightarrow \Sigma_1 \]

A lot of equations have to hold.

Thus: This is equivalent to original definition.

Shows relationship with simplicial sets.
EX 0 CAT: The category of categories, functions and natural transformations.

Defn: This is a 2-category, since all \(a, b, c \) are equalities.

2) Monoidal categories can be seen things as 1-object bicategories.

3) Rel

Object are sets, arrows are binary relations \(\text{Hom}(X, Y) \) is a poset under inclusion. Composition is functorial in both variables. That's all we need. Coherence is straightforward. Why?

4) Span

Let \(C \) be any category with pullbacks.

A span is a diagram of the form

\[
\begin{array}{ccc}
 & f & \rightarrow & s \\
 V & \downarrow & & \downarrow & \downarrow \\
 Y & \rightarrow & X & \rightarrow & Z
\end{array}
\]
One can compose spans using pullbacks:

\[X \times_Z W \]

So we view a span as an arrow (1-cell)

\[Y \to Z \]

The 2-cells are:

\[
\begin{array}{ccc}
X & \to & Z \\
\downarrow & & \downarrow \\
X & \to & Z \\
\end{array}
\]

Checking all axioms is tedious but straightforward.

Thm: Relations are special cases of spans on sets.

Q: How can you characterize them abstractly?

There is a condition called **jointly monotone**.
5) Let \(\mathcal{M} \) be a monoidal category and let \(\mathcal{C} \) be any category. A left action of \(\mathcal{M} \) on \(\mathcal{C} \) is

1) A functor

\[\otimes : \mathcal{M} \times \mathcal{C} \to \mathcal{C} \]

2) Two natural transformations

\[\alpha : (A_1 \otimes A_2) \otimes X \to A_1 \otimes (A_2 \otimes X) \]

for \(A_1, A_2 \in \mathcal{M}, X \in \mathcal{C} \)

\[\eta : I \otimes X \to X \]

\(I \) is the unit for \(\mathcal{M} \)

\[X \in \mathcal{C} \]

satisfying obvious axioms.

From this, one can build a bicategory as follows:

- **O-cells**: \(0,1 \)

\[S(0,0) = \mathcal{M} \]

\[S(0,1) = \mathcal{E} \]

\[S(1,1) = 1 \]

\[S(1,0) = \emptyset \]

Fill in the rest of the details.
Bimodules

0-cells : Rings
1-cells are bimodules

So if Rs on rings. A 1-cell is a bimodule M, which is an R-S bimodule.
So I have maps

\[R \times M \rightarrow M \]
\[M \times S \rightarrow M \]

denote the \(R \) s satisfying obvious actions.

2-cells are bimodule maps.

Then given

\[R \times S = \text{and} \quad S \times T \]

one forms

\[R \times M \otimes S N \]

for composition.

This sets us to p23 of Benabou.