1

Chain Complexes

1.1 Complexes of R-Modules

Homological algebra is a tool used in several branches of mathematics: algebraic topology, group theory, commutative ring theory, and algebraic geometry come to mind. It arose in the late 1800s in the following manner. Let f and g be matrices whose product is zero. If $g \cdot v = 0$ for some column vector v, say, of length n, we cannot always write $v = f \cdot u$. This failure is measured by the defect

$$d = n - \text{rank}(f) - \text{rank}(g).$$

In modern language, f and g represent linear maps

$$U \xrightarrow{f} V \xrightarrow{g} W$$

with $gf = 0$, and d is the dimension of the homology module

$$H = \ker(g)/f(U).$$

In the first part of this century, Poincaré and other algebraic topologists utilized these concepts in their attempts to describe n-dimensional holes in simplicial complexes. Gradually people noticed that vector space could be replaced by R-module for any ring R.

This being said, we fix an associative ring R and begin again in the category $\text{mod-}R$ of right R-modules. Given an R-module homomorphism $f: A \to B$, one is immediately led to study the kernel $\ker(f)$, cokernel $\text{coker}(f)$, and image $\text{im}(f)$ of f. Given another map $g: B \to C$, we can form the sequence

$$(*) \quad A \xrightarrow{f} B \xrightarrow{g} C.$$
We say that such a sequence is exact (at B) if $\ker(g) = \text{im}(f)$. This implies in particular that the composite $gf: A \to C$ is zero, and finally brings our attention to sequences (\star) such that $gf = 0$.

Definition 1.1.1 A chain complex C of R-modules is a family $\{C_n\}_{n \in \mathbb{Z}}$ of R-modules, together with R-module maps $d = d_n: C_n \to C_{n-1}$ such that each composite $d o d: C_n \to C_{n-2}$ is zero. The maps d_n are called the **differentials** of C. The kernel of d_n is the module of n-cycles of C, denoted $Z_n = Z_n(C)$. The image of $d_{n+1}: C_{n+1} \to C_n$ is the module of n-boundaries of C, denoted $B_n = B_n(C)$. Because $d o d = 0$, we have

$$0 \subseteq B_n \subseteq Z_n \subseteq C_n$$

for all n. The n^{th} homology module of C, is the subquotient $H_n(C) = Z_n/B_n$ of C. Because the dot in C, is annoying, we will often write C for C.

Exercise 1.1.1 Set $C_n = \mathbb{Z}/8$ for $n \geq 0$ and $C_n = 0$ for $n < 0$; for $n > 0$ let d_n send $x (\text{mod } 8)$ to $4x (\text{mod } 8)$. Show that C is a chain complex of $\mathbb{Z}/8$-modules and compute its homology modules.

There is a category Ch(mod-R) of chain complexes of (right) R-modules. The objects are, of course, chain complexes. A **morphism** $u: C \to D$ is a chain complex map, that is, a family of R-module homomorphisms $u_n: C_n \to D_n$ commuting with d in the sense that $u_{n-1}d_n = d_{n-1}u_n$. That is, such that the following diagram commutes

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d} C_n \xrightarrow{d} C_{n-1} \xrightarrow{d} \cdots$$

$$\downarrow u \quad \downarrow u \quad \downarrow u$$

$$\cdots \longrightarrow D_{n+1} \xrightarrow{d} D_n \xrightarrow{d} D_{n-1} \xrightarrow{d} \cdots$$

Exercise 1.1.2 Show that a morphism $u: C \to D$ of chain complexes sends boundaries to boundaries and cycles to cycles, hence maps $H_n(C) \to H_n(D)$. Prove that each H_n is a functor from Ch(mod-R) to mod-R.

Exercise 1.1.3 (Split exact sequences of vector spaces) Choose vector spaces $\{B_n, H_n\}_{n \in \mathbb{Z}}$ over a field, and set $C_n = B_n \oplus H_n \oplus B_{n-1}$. Show that the projection-inclusions $C_n \to B_{n-1} \cap C_{n-1}$ make $\{C_n\}$ into a chain complex, and that every chain complex of vector spaces is isomorphic to a complex of this form.
Exercise 1.1.4 Show that \{\text{Hom}_R(A, C_n)\} forms a chain complex of abelian groups for every R-module A and every R-module chain complex C. Taking \(A = \mathbb{Z}_n\), show that if \(H_n(\text{Hom}_R(\mathbb{Z}_n, C)) = 0\), then \(H_n(C) = 0\). Is the converse true?

Definition 1.1.2 A morphism \(C \to D\) of chain complexes is called a quasi-isomorphism (Bourbaki uses homologism) if the maps \(H_n(C) \to H_n(D)\) are all isomorphisms.

Exercise 1.1.5 Show that the following are equivalent for every \(C\).

1. \(C\) is exact, that is, exact at every \(C_n\).
2. \(C\) is acyclic, that is, \(H_n(C) = 0\) for all \(n\).
3. The map \(0 \to C\) is a quasi-isomorphism, where “0” is the complex of zero modules and zero maps.

The following variant notation is obtained by reindexing with superscripts: \(C^n = C_{-n}\). A cochain complex \(C\) of R-modules is a family \(\{C_i\}\) of R-modules, together with maps \(d^n: C^n \to C^{n+1}\) such that \(d \circ d = 0\). \(\mathbb{Z}^n(C) = \ker(d^n)\) is the module of n-cocycles, \(B^n(C) = \text{im}(d^{n-1}) \subseteq C^n\) is the module of n-coboundaries, and the subquotient \(H^n(C) = \mathbb{Z}^n / B^n\) of \(C^n\) is the \(n^{th}\) cohomology module of \(C\). Morphisms and quasi-isomorphisms of cochain complexes are defined exactly as for chain complexes.

A chain complex \(C\) is called bounded if almost all the \(C_n\) are zero; if \(C_n = 0\) unless \(a \leq n \leq b\), we say that the complex has amplitude in \([a, b]\). A complex \(C\) is bounded above (resp. bounded below) if there is a bound \(b\) (resp. \(a\)) such that \(C_n = 0\) for all \(n > b\) (resp. \(n < a\)). The bounded (resp. bounded above, resp. bounded below) chain complexes form full subcategories of \(\text{Ch} = \text{Ch}(\text{R-mod})\) that are denoted \(\text{Ch}_b, \text{Ch}_-\) and \(\text{Ch}_+\), respectively. The subcategory \(\text{Ch}_{\geq 0}\) of non-negative complexes \(C\) (\(C_n = 0\) for all \(n < 0\)) will be important in Chapter 8.

Similarly, a cochain complex \(C\) is called bounded above if the chain complex \(C\) (\(C = C^{-n}\)) is bounded below, that is, if \(C_n = 0\) for all large \(n\); \(C\) is bounded below if \(C\) is bounded above, and bounded if \(C\) is bounded.

The categories of bounded (resp. bounded above, resp. bounded below, resp. non-negative) cochain complexes are denoted \(\text{Ch}^b, \text{Ch}^-, \text{Ch}^+, \text{Ch}_{\geq 0}\), respectively.

Exercise 1.1.6 (Homology of a graph) Let \(\Gamma\) be a finite graph with \(V\) vertices \((v_1, \ldots, v_V)\) and \(E\) edges \((e_1, \ldots, e_E)\). If we orient the edges, we can form the incidence matrix of the graph. This is a \(V \times E\) matrix whose \((ij)\) entry is \(+1\)
if the edge e_j starts at v_i, -1 if e_j ends at v_i, and 0 otherwise. Let C_0 be the free R-module on the vertices, C_1 the free R-module on the edges, $C_n=0$ if $n \neq 0, 1$, and $d: C_1 \to C_0$ be the incidence matrix. If Γ is connected (i.e., we can get from v_0 to every other vertex by tracing a path with edges), show that $H_0(C)$ and $H_1(C)$ are free R-modules of dimensions 1 and $V-1$ respectively. (The number $V-E-1$ is the number of circuits of the graph.)

Hint: Choose basis $\{v_0, v_1-v_0, \ldots, v_V-v_0\}$ for C_0, and use a path from v_0 to v_i to find an element of C_1 mapping to v_i-v_0.

Application 1.1.3 (Simplicial homology)

Here is a topological application we shall discuss more in Chapter 8. Let K be a geometric simplicial complex, such as a triangulated polyhedron, and let K_k denote the set of k-dimensional simplices of K. Each k-simplex has $k+1$ faces, which are ordered if the set K_0 of vertices is ordered (do so!), so we obtain $k+1$ set maps $\partial_i: K_k \to K_{k-1}$, where each simplex yields $k+1$ module maps $C_k \to C_{k-1}$, which we also call ∂_i; their alternating sum $d = \sum (-1)^i \partial_i$ is the map $C_k \to C_{k-1}$ in the chain complex C. To see that C is a chain complex, we need to prove the algebraic assertion that $d \circ d = 0$. This translates into the geometric fact that each $(k-2)$-dimensional simplex contained in a fixed k-simplex σ of K lies on exactly two faces of σ. The homology of the chain complex C is called the *simplicial homology* of K with coefficients in R. This simplicial approach to homology was used in the first part of this century, before the advent of singular homology.

Exercise 1.1.7 (Tetrahedron)

The tetrahedron T is a surface with 4 vertices, 6 edges, and 4 2-dimensional faces. Thus its homology is the homology of a chain complex $0 \to R^4 \to R^6 \to R^4 \to 0$. Write down the matrices in this complex and verify computationally that $H_2(T) \cong H_0(T) \cong R$ and $H_1(T) = 0$.

Application 1.1.4 (Singular homology)

Let X be a topological space, and let $S_k = S_k(X)$ be the free R-module on the set of continuous maps from the standard k-simplex Δ_k to X. Restriction to the i^{th} face of Δ_k $(0 \leq i \leq k)$ transforms a map $\Delta_k \to X$ into a map $\Delta_{k-1} \to X$, and induces an R-module homomorphism ∂_i from S_k to S_{k-1}. The alternating sums $d = \sum (-1)^i \partial_i$ (from S_k to S_{k-1}) assemble to form a chain complex

$$\cdots \to d \to S_2 \to d \to S_1 \to d \to S_0 \to 0,$$
called the singular chain complex of X. The n^{th} homology module of $S(X)$ is called the n^{th} singular homology of X (with coefficients in R) and is written $H_n(X; R)$. If X is a geometric simplicial complex, then the obvious inclusion $C_*(X) \rightarrow S(X)$ is a quasi-isomorphism, so the simplicial and singular homology modules of X are isomorphic. The interested reader may find details in any standard book on algebraic topology.

1.2 Operations on Chain Complexes

The main point of this section will be that chain complexes form an abelian category. First we need to recall what an abelian category is. A reference for these definitions is [MacCW].

A category \mathcal{A} is called an Ab-category if every horn-set $\text{Hom}_\mathcal{A}(A, B)$ in \mathcal{A} is given the structure of an abelian group in such a way that composition distributes over addition. In particular, given a diagram in \mathcal{A} of the form

$$
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{g} & & \downarrow{g'} \\
C & \xrightarrow{h} & D
\end{array}
$$

we have $h(g + g')f = hgf + hg'$ in $\text{Hom}(A, D)$. The category Ch is an Ab-category because we can add chain maps degreewise; if $\{f_n\}$ and $\{g_n\}$ are chain maps from C_* to D_*, their sum is the family of maps $\{f_n + g_n\}$.

An additive functor $F: \mathcal{B} \rightarrow \mathcal{A}$ between Ab-categories \mathcal{B} and \mathcal{A} is a functor such that each $\text{Hom}_\mathcal{B}(B, A) \rightarrow \text{Hom}_\mathcal{A}(FB, FA)$ is a group homomorphism.

An additive category is an Ab-category \mathcal{A} with a zero object (i.e., an object that is initial and terminal) and a product $A \times B$ for every pair A, B of objects in \mathcal{A}. This structure is enough to make finite products the same as finite coproducts. The zero object in Ch is the complex “0” of zero modules and maps. Given a family $\{A_\alpha\}$ of complexes of R-modules, the product $\prod A_\alpha$ and coproduct (direct sum) $\bigoplus A_\alpha$ exist in Ch and are defined degreewise: the differentials are the maps

$$
\prod d_\alpha : \prod A_{\alpha, n} \rightarrow \prod A_{\alpha, n-1} \quad \text{and} \quad \bigoplus d_\alpha : \bigoplus A_{\alpha, n} \rightarrow \bigoplus A_{\alpha, n-1},
$$

respectively. These suffice to make Ch into an additive category.

Exercise 1.2.1 Show that direct sum and direct product commute with homology, that is, that $\bigoplus H_n(A_\alpha) \cong H_n(\bigoplus A_\alpha)$ and $\prod H_n(A_\alpha) \cong H_n(\prod A_\alpha)$ for all n.

Here are some important constructions on chain complexes. A chain complex B is called a subcomplex of C if each B_i is a submodule of C_i and the differential on B is the restriction of the differential on C, that is, when the inclusions $i_n: B_n \subseteq C_n$ constitute a chain map $B \to C$. In this case we can assemble the quotient modules C_i/B_i into a chain complex

$$\cdots \to C_{n+1}/B_{n+1} \to C_n/B_n \to C_{n-1}/B_{n-1} \to \cdots$$

denoted C/B and called the quotient complex. If $f: B \to C$ is a chain map, the kernels $\{\ker(f_n)\}$ assemble to form a subcomplex of B denoted $\ker(f)$, and the cokernels $\{\coker(f_n)\}$ assemble to form a quotient complex of C denoted $\coker(f)$.

Definition 1.2.1 In any additive category A, a kernel of a morphism $f: B \to C$ is defined to be a map $i: A \to B$ such that $fi = 0$ and that is universal with respect to this property. Dually, a cokernel of f is a map $e: C \to D$, which is universal with respect to having $ef = 0$. In A, a map $i: A \to B$ is monic if $ig = 0$ implies $g = 0$ for every map $g: A \to A$, and a map $e: C \to D$ is an epi if $he = 0$ implies $h = 0$ for every map $h: D \to D$. (The definition of monic and epi in a non-abelian category is slightly different; see A.1 in the Appendix.) It is easy to see that every kernel is monic and that every cokernel is an epi (exercise!).

Exercise 1.2.2 In the additive category $A = \text{R-mod}$, show that:

1. The notions of kernels, monics, and monomorphisms are the same.
2. The notions of cokernels, epis, and epimorphisms are also the same.

Exercise 1.2.3 Suppose that $A = \text{Ch}$ and f is a chain map. Show that the complex $\ker(f)$ is a kernel of f and that $\coker(f)$ is a cokernel of f.

Definition 1.2.2 An abelian category is an additive category A such that

1. every map in A has a kernel and cokernel.
2. every monic in A is the kernel of its cokernel.
3. every epi in A is the cokernel of its kernel.

The prototype abelian category is the category mod-R of R-modules. In any abelian category the image $\text{im}(f)$ of a map $f: B \to C$ is the subobject $\ker(\coker(f))$ of C; in the category of R-modules, $\text{im}(f) = \{f(b) : b \in B\}$. Every map f factors as
1.2 Operations on Chain Complexes

\[B \xrightarrow{e} \text{im}(f) \xrightarrow{m} C \]

with \(e \) an epimorphism and \(m \) a monomorphism. A sequence

\[A \xrightarrow{f} B \xrightarrow{g} C \]

of maps in \(A \) is called exact (at \(B \)) if \(\ker(g) = \text{im}(f) \).

A subcategory \(B \) of \(A \) is called an abelian subcategory if it is abelian, and an exact sequence in \(B \) is also exact in \(A \).

If \(A \) is any abelian category, we can repeat the discussion of section 1.1 to define chain complexes and chain maps in \(d \)-just replace \texttt{mod-R} by \(A \!). These form an additive category \(\text{Ch}(d) \), and homology becomes a functor from this category to \(A \). In the sequel we will merely write \(\text{Ch} \) for \(\text{Ch}(d) \) when \(A \) is understood.

Theorem 1.2.3 The category \(\text{Ch} = \text{Ch}(A) \) of chain complexes is an abelian category.

Proof Condition 1 was exercise 1.2.3 above. If \(f: B \to C \) is a chain map, I claim that \(f \) is monic iff each \(B_n \to C_n \) is monic, that is, \(B \) is isomorphic to a subcomplex of \(C \). This follows from the fact that the composite \(\ker(f) \to C \) is zero, so if \(f \) is monic, then \(\ker(f) = 0 \). So if \(f \) is monic, it is isomorphic to the kernel of \(C \to C/B \). Similarly, \(f \) is an epi iff each \(B_n \to C_n \) is an epi, that is, \(C \) is isomorphic to the cokernel of the chain map \(\ker(f) \to B \).

Exercise 1.2.4 Show that a sequence \(0 \to A, \to B, \to C, \to 0 \) of chain complexes is exact in \(\text{Ch} \) just in case each sequence \(0 \to A_n, \to B_n \to C_n \to 0 \) is exact in \(A \).

Clearly we can iterate this construction and talk about chain complexes of chain complexes; these are usually called double complexes.

Example 1.2.4 A double complex (or bicomplex) in \(A \) is a family \(\{C_{p,q}\} \) of objects of \(A \), together with maps

\[d^h: C_{p,q} \to C_{p-1,q} \quad \text{and} \quad d^v: C_{p,q} \to C_{p,q-1} \]

such that \(d^h \circ d^h = d^v \circ d = d^v d^h + d^h d^v = 0 \). It is useful to picture the bicomplex \(C_{p,q} \) as a lattice.
in which the maps \(d^h\) go horizontally, the maps \(d\) go vertically, and each square anticommutates. Each row \(C_{*,q}\) and each column \(C_{p,*}\) is a chain complex.

We say that a double complex \(C\) is **bounded** if \(C\) has only finitely many nonzero terms along each diagonal line \(p + q = n\), for example, if \(C\) is concentrated in the first quadrant of the plane (a **first quadrant double complex**).

Sign Trick 1.2.5 Because of the anticommutativity, the maps \(d\) **are** not maps in \(\mathbf{Ch}\), but chain maps \(f_{*,q}\) from \(C_{*,q}\) to \(C_{*,q-1}\) can be defined by introducing \(\pm\) signs:

\[
f_{p,q} = (-1)^p d_{p,q}^v : C_{p,q} \to C_{p,q-1}.
\]

Using this sign trick, we can identify the category of double complexes with the category \(\mathbf{Ch(Ch)}\) of chain complexes in the **abelian** category \(\mathbf{Ch}\).

Total Complexes 1.2.6 To see why the anticommutative condition \(d^v d^h + d^h d^v = 0\) is useful, define the **total complexes** \(\operatorname{Tot}(C) = \operatorname{Tot}^\pi(C)\) and \(\operatorname{Tot@}(C)\) by

\[
\operatorname{Tot}^\pi(C), = \prod_{p+q=n} C_{p,q} \text{ and } \operatorname{Tot@}(C), = \bigoplus_{p+q=n} C_{p,q}.
\]

The formula \(d = d^h + d\) defines maps (check this!)

\[
d : \operatorname{Tot}^\pi(C)_n \to \operatorname{Tot}^\pi(C)_{n-1} \quad \text{and} \quad d : \operatorname{Tot}(C)_n \to \operatorname{Tot@}(C)_{n-1}
\]
such that \(d \circ d = 0\), making \(\operatorname{Tot}(C)\) and \(\operatorname{Tot@}(C)\) into chain complexes. Note that \(\operatorname{Tot@}(C) = \operatorname{Tot}(C)\) if \(C\) is bounded, and especially if \(C\) is a first quadrant double complex. The difference between \(\operatorname{Tot}(C)\) and \(\operatorname{Tot@}(C)\) will become apparent in Chapter 5 when we discuss spectral sequences.
Remark 1.2.7 Operations on Chain Complexes

Tot(C) and Tot(C) do not exist in all abelian categories; they don’t exist when A is the category of all finite abelian groups. We say that an abelian category is complete if all infinite direct products exist (and so Tot exists) and that it is cocomplete if all infinite direct sums exist (and so Tot exists). Both these axioms hold in R-mod and in the category of chain complexes of R-modules.

Exercise 1.2.5 Give an elementary proof that Tot(C) is acyclic whenever C is a bounded double complex with exact rows (or exact columns). We will see later that this result follows from the Acyclic Assembly Lemma 2.7.3. It also follows from a spectral sequence argument (see Definition 5.6.2 and exercise 5.6.4).

Exercise 1.2.6 Give examples of (1) a second quadrant double complex C with exact columns such that Tot(C) is acyclic but Tot(C) is not; (2) a second quadrant double complex C with exact rows such that Tot(C) is acyclic but Tot(C) is not; and (3) a double complex (in the entire plane) for which every row and every column is exact, yet neither Tot(C) nor Tot(C) is acyclic.

Truncations 1.2.7 If C is a chain complex and n is an integer, we let \(\tau_{\geq n} C \) denote the subcomplex of C defined by

\[
(\tau_{\geq n} C)_i = \begin{cases}
0 & \text{if } i < n \\
\mathbb{Z} & \text{if } i = n \\
C_i & \text{if } i > n.
\end{cases}
\]

Clearly \(H_i(\tau_{\geq n} C) = 0 \) for \(i < n \) and \(H_i(\tau_{\geq n} C) = H_i(C) \) for \(i \geq n \). The complex \(\tau_{\geq n} C \) is called the (good) truncation of C below n, and the quotient complex \(\tau_{<n} C = C/(\tau_{\geq n} C) \) is called the (good) truncation of C above n; \(H_i(\tau_{<n} C) = H_i(C) \) for \(i < n \) and 0 for \(i \geq n \).

Some less useful variants are the brutal truncations \(\sigma_{<n} C \) and \(\sigma_{\geq n} C = C/(\sigma_{<n} C) \). By definition, \((\sigma_{<n} C)_i \) is \(C_i \) if \(i < n \) and 0 if \(i \geq n \). These have the advantage of being easier to describe but the disadvantage of introducing the homology group \(H_n(\sigma_{\geq n} C) = C_n/B_n \).

Translation 1.2.8 Shifting indices, or translation, is another useful operation we can perform on chain and cochain complexes. If C is a complex and p an integer, we form a new complex \(C[p] \) as follows:

\[
C[p]_n = C_{n+p} \quad (\text{resp. } C[p]^n = C^{n-p})
\]
with differential \((-1)^pd\). We call \(C[p]\) the \(p^{th}\) translate of \(C\). The way to remember the shift is that the degree 0 part of \(C[p]\) is \(C\). The sign convention is designed to simplify notation later on. Note that translation shifts homology:

\[H_n(C[p]) = H_{n+p}(C) \quad \text{(resp.} H^n(C[p]) = H^{n-p}(C)) .\]

We make translation into a functor by shifting indices on chain maps. That is, if \(f : C \to D\) is a chain map, then \(f[p]\) is the chain map given by the formula

\[f[p]_n = f_{n+p} \quad \text{(resp.} f^n[p] = f^{n-p}) .\]

Exercise 1.2.7 If \(C\) is a complex, show that there are exact sequences of complexes:

\[0 \longrightarrow Z(C) \longrightarrow c \xrightarrow{d} B(C)[-1] \longrightarrow 0 ; \]

\[0 \longrightarrow H(C) \longrightarrow C/B(C) \xrightarrow{d} Z(C)[-1] \longrightarrow H(C)[-1] \longrightarrow 0 . \]

Exercise 1.2.8 (Mapping cone) Let \(f : B \to C\) be a morphism of chain complexes. Form a double chain complex \(D\) out of \(f\) by thinking of \(f\) as a chain complex in \(Ch\) and using the sign trick, putting \(B[-1]\) in the row \(q = 1\) and \(C\) in the row \(q = 0\). Thinking of \(C\) and \(B[-1]\) as double complexes in the obvious way, show that there is a short exact sequence of double complexes

\[0 \longrightarrow C \longrightarrow D \xrightarrow{\delta} B[-1] \longrightarrow 0 . \]

The total complex of \(D\) is \(\text{cone}(f')\), the mapping cone (see section 1.5) of a map \(f'\), which differs from \(f\) only by some \(\pm\) signs and is isomorphic to \(f\).

1.3 Long Exact Sequences

It is time to unveil the feature that makes chain complexes so special from a computational viewpoint: the existence of long exact sequences.

Theorem 1.3.1 Let \(0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0\) be a short exact sequence of chain complexes. Then there are natural maps \(\partial : H_n(C) \to H_{n-1}(A)\), called connecting homomorphisms, such that

\[\cdots \xrightarrow{g} H_{n+1}(C) \xrightarrow{\partial} H_n(A) \xrightarrow{f} H_n(B) \xrightarrow{g} H_n(C) \xrightarrow{\partial} H_{n-1}(A) \xrightarrow{f} \cdots \]

is an exact sequence.
Similarly, if \(0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0 \) is a short exact sequence of cochain complexes, there are natural maps \(\partial : H^n(C) \rightarrow H^{n+1}(A) \) and a long exact sequence
\[
\cdots \xrightarrow{g} H^{n-1}(C) \xrightarrow{\partial} H^n(A) \xrightarrow{f} H^n(B) \xrightarrow{g} H^n(C) \xrightarrow{\partial} H^{n+1}(A) \xrightarrow{f} \cdots
\]

Exercise 1.3.1 Let \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \) be a short exact sequence of complexes. Show that if two of the three complexes \(A, B, C \) are exact, then so is the third.

Exercise 1.3.2 (3 x 3 lemma) Suppose given a commutative diagram

\[
\begin{array}{ccc}
0 & \rightarrow & 0 \\
\downarrow & & \downarrow \\
0 & \rightarrow & A' \\
\downarrow & & \downarrow \\
0 & \rightarrow & B' \\
\downarrow & & \downarrow \\
0 & \rightarrow & C' \\
\downarrow & & \downarrow \\
0 & \rightarrow & 0
\end{array}
\]

in an abelian category, such that every column is exact. Show the following:

1. If the bottom two rows are exact, so is the top row.
2. If the top two rows are exact, so is the bottom row.
3. If the top and bottom rows are exact, and the composite \(A \rightarrow C \) is zero, the middle row is also exact.

Hint: Show the remaining row is a complex, and apply exercise 1.3.1.

The key tool in constructing the connecting homomorphism \(\partial \) is our next result, the *Snake Lemma*. We will not print the proof in these notes, because it is best done visually. In fact, a clear proof is given by Jill Clayburgh at the beginning of the movie *It's My Turn* (Rastar-Martin Elfand Studios, 1980). As an exercise in diagram chasing of elements, the student should find a proof (but privately-keep the proof to yourself!).

Snake Lemma 1.3.2 Consider a commutative diagram of \(R \)-modules of the form
Chain Complexes

\[A \xrightarrow{f} B \xrightarrow{g} C' \xrightarrow{h} 0 \]

If the rows are exact, there is an exact sequence

\[\text{ker}(f) \rightarrow \text{ker}(g) \rightarrow \text{ker}(h) \xrightarrow{\partial} \text{coker}(f) \rightarrow \text{coker}(g) \rightarrow \text{coker}(h) \]

with \(\partial \) defined by the formula

\[\partial(c') = i^{-1} g p^{-1}(c'), \quad c' \in \ker(h). \]

Moreover, if \(A \rightarrow B \) is monic, then so is \(\ker(f) \rightarrow \ker(g) \), and if \(B \rightarrow C \) is onto, then so is \(\text{coker}(f) \rightarrow \text{coker}(g) \).

Etymology The term snake comes from the following visual mnemonic:

Remark The Snake Lemma also holds in an arbitrary abelian category \(\mathcal{C} \). To see this, let \(\mathcal{A} \) be the smallest abelian subcategory of \(\mathcal{C} \) containing the objects and morphisms of the diagram. Since \(\mathcal{A} \) has a set of objects, the Freyd-Mitchell Embedding Theorem (see 1.6.1) gives an exact, fully faithful embedding of \(\mathcal{A} \) into R-mod for some ring \(R \). Since \(\partial \) exists in R-mod, it exists in \(\mathcal{A} \) and hence in \(\mathcal{C} \). Similarly, exactness in R-mod implies exactness in \(\mathcal{A} \) and hence in \(\mathcal{C} \).
Exercise 1.3.3 (5–Lemma) In any commutative diagram

\[
\begin{array}{cccccc}
A & \longrightarrow & B & \longrightarrow & C & \longrightarrow D' \longrightarrow E' \\
\downarrow \cong & & \downarrow \cong & & \downarrow \cong & \downarrow \cong \\
A & \longrightarrow & B & \longrightarrow & C & \longrightarrow D & \longrightarrow E
\end{array}
\]

with exact rows in any abelian category, show that if \(a, b, d, \) and \(e \) are isomorphisms, then \(c \) is also an isomorphism. More precisely, show that if \(b \) and \(d \) are monic and \(a \) is an epi, then \(c \) is monic. Dually, show that if \(b \) and \(d \) are epis and \(e \) is monic, then \(c \) is an epi.

We now proceed to the construction of the connecting homomorphism \(\partial \) of Theorem 1.3.1 associated to a short exact sequence

\[
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
\]

of chain complexes. From the Snake Lemma and the diagram

\[
\begin{array}{cccccc}
0 & & & & & 0 \\
\downarrow & & & & & \downarrow \\
0 & \longrightarrow & Z_nA & \longrightarrow & Z_nB & \longrightarrow Z_nC \\
\downarrow & & \downarrow & & \downarrow & \\
0 & \longrightarrow & A_n & \longrightarrow & B_n & \longrightarrow C_n & \longrightarrow 0 \\
\downarrow d & \downarrow d & \downarrow d \\
0 & \longrightarrow & A_{n-1} & \longrightarrow & B_{n-1} & \longrightarrow C_{n-1} & \longrightarrow 0 \\
\downarrow & \downarrow & \downarrow \\
\frac{A_{n-1}}{dA_n} & \longrightarrow & \frac{B_{n-1}}{dB_n} & \longrightarrow \frac{C_{n-1}}{dC_n} & \longrightarrow 0 \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0 \\
\end{array}
\]

we see that the rows are exact in the commutative diagram

\[
\begin{array}{cccccc}
\frac{A_n}{dA_{n+1}} & \longrightarrow & \frac{B_n}{dB_{n+1}} & \longrightarrow & \frac{C_n}{dC_{n+1}} & \longrightarrow 0 \\
\downarrow d & \downarrow d & \downarrow d \\
0 & \longrightarrow & Z_{n-1}(A) & \longrightarrow & Z_{n-1}(B) & \longrightarrow Z_{n-1}(C).
\end{array}
\]
The kernel of the left vertical is $H_n(A)$, and its cokernel is $H_{n-1}(A)$. Therefore the Snake Lemma yields an exact sequence

$$H_n(A) \xrightarrow{f} H_n(B) \xrightarrow{g} H_n(C) \xrightarrow{\partial} H_{n-1}(A) \to H_{n-1}(B) \to H_{n-1}(C).$$

The long exact sequence 1.3.1 is obtained by pasting these sequences together.

Addendum 1.3.3 When one computes with modules, it is useful to be able to push elements around. By decoding the above proof, we obtain the following formula for the connecting homomorphism: Let $z \in H_n(C)$, and represent it by a cycle $c \in C$. Lift the cycle to $b \in B$ and apply d. The element db of B_{n-1} actually belongs to the submodule $Z_{n-1}(A)$ and represents $\partial(z) \in H_{n-1}(A)$.

We shall now explain what we mean by the naturality of ∂. There is a category \mathcal{S} whose objects are short exact sequences of chain complexes (say, in an abelian category C). Commutative diagrams

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

(\ast)

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

give the morphisms in \mathcal{S} (from the top row to the bottom row). Similarly, there is a category \mathcal{L} of long exact sequences in C.

Proposition 1.3.4 The long exact sequence is a functor from \mathcal{S} to \mathcal{L}. That is, for every short exact sequence there is a long exact sequence, and for every map (\ast) of short exact sequences there is a commutative ladder diagram

$$\cdots \xrightarrow{\partial} H_n(A) \rightarrow H_n(B) \rightarrow H_n(C) \xrightarrow{\partial} H_{n-1}(A) \rightarrow \cdots$$

$$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$$

$$\cdots \xrightarrow{\partial} H_n(A') \rightarrow H_n(B') \rightarrow H_n(C') \xrightarrow{\partial} H_{n-1}(A') \rightarrow \cdots$$

Proof All we have to do is establish the ladder diagram. Since each H_n is a functor, the left two squares commute. Using the Embedding Theorem 1.6.1, we may assume $C = \text{mod-}R$ in order to prove that the right square commutes. Given $z \in H_n(C)$, represented by $c \in C$, its image $z' \in H_n(C')$ is represented by the image of c. If $b \in B$ lifts c, its image in B' lifts c. Therefore by 1.3.3 $\partial(z') \in H_{n-1}(A')$ is represented by the image of db, that is, by the image of a representative of $a(z)$, so $\partial(z')$ is the image of $a(z)$. \hfill \Diamond
Remark 1.3.5 The data of the long exact sequence is sometimes organized into the mnemonic shape

\[H_*(A) \quad \rightarrow \quad H_*(B) \]
\[\partial \quad \swarrow \quad \searrow \]
\[H_*(C) \]

This is called an *exact triangle* for obvious reasons. This mnemonic shape is responsible for the term *triangulated category*, which we will discuss in Chapter 10. The category \(K \) of chain equivalence classes of complexes and maps (see exercise 1.4.5 in the next section) is an example of a triangulated category.

Exercise 1.3.4 Consider the boundaries-cycles exact sequence \(0 \rightarrow Z \rightarrow C \rightarrow B(-1) \rightarrow 0 \) associated to a chain complex \(C \) (exercise 1.2.7). Show that the corresponding long exact sequence of homology breaks up into short exact sequences.

Exercise 1.3.5 Let \(f \) be a morphism of chain complexes. Show that if \(\ker(f) \) and \(\coker(f) \) are acyclic, then \(f \) is a quasi-isomorphism. Is the converse true?

Exercise 1.3.6 Let \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \) be a short exact sequence of double complexes of modules. Show that there is a short exact sequence of total complexes, and conclude that if \(\text{Tot}(C) \) is acyclic, then \(\text{Tot}(A) \rightarrow \text{Tot}(B) \) is a quasi-isomorphism.

1.4 Chain Homotopies

The ideas in this section and the next are motivated by homotopy theory in topology. We begin with a discussion of a special case of historical importance. If \(C \) is any chain complex of vector spaces over a field, we can always choose vector space decompositions:

\[C_n = Z_n \oplus B'_n, \quad B'_n \cong C_n / Z_n = d(C_n) = B_{n-1}; \]
\[Z_n = B_n \oplus H'_n, \quad H'_n \cong Z_n / B_n = H_*(C). \]

Therefore we can form the compositions

\[C_n \rightarrow Z_n \rightarrow B_n \cong B'_{n+1} \subseteq C_{n+1} \]
to get splitting maps $s_n: C_n \to C_{n+1}$, such that $d = dsd$. The compositions ds and sd are projections from C_n onto B_n and B'_n, respectively, so the sum $ds + sd$ is an endomorphism of C_n whose kernel H'_n is isomorphic to the homology $H_n(C)$. The kernel (and cokernel!) of $ds + sd$ is the trivial homology complex $H_n(C)$. Evidently both chain maps $H_n(C) \to C$ and $C \to H_n(C)$ are quasi-isomorphisms. Moreover, C is an exact sequence if and only if $ds + sd$ is the identity map.

Over an arbitrary ring R, it is not always possible to split chain complexes like this, so we give a name to this notion.

Definition 1.4.1 A complex C is called **split** if there are maps $s_n: C_n \to C_{n+1}$ such that $d = dsd$. The maps s_n are called the splitting maps. If in addition C is acyclic (exact as a sequence), we say that C is **split exact**.

Example 1.4.2 Let $R = \mathbb{Z}$ or $\mathbb{Z}/4$, and let C be the complex

\[
\cdots \mathbb{Z}/4 \overset{2}{\to} \mathbb{Z}/4 \overset{2}{\to} \mathbb{Z}/4 \overset{2}{\to} \cdots
\]

This complex is acyclic but not split exact. There is no map s such that $ds + sd$ is the identity map, nor is there any direct sum decomposition $C_n \cong \mathbb{Z}_n \oplus B'_n$.

Exercise 1.4.1 The previous example shows that even an acyclic chain complex of free R-modules need not be split exact.

1. Show that acyclic **bounded below** chain complexes of free R-modules are always split exact.
2. Show that an acyclic chain complex of finitely generated free abelian groups is always split exact, even when it is not bounded below.

Exercise 1.4.2 Let C be a chain complex, with boundaries B_n and cycles Z_n in C. Show that C is split if and only if there are R-module decompositions $C_n \cong \mathbb{Z}_n \oplus B'_n$ and $Z_n = B_n \oplus H'_n$. Show that C is split exact iff $H'_n = 0$.

Now suppose that we are given two chain complexes C and D, together with randomly chosen maps $s_n: C_n \to D_{n+1}$. Let f_n be the map from C_n to D_n defined by the formula $f_n = d_{n+1}s_n + s_{n-1}d_n$.

$$
\begin{array}{ccc}
C_{n+1} \overset{d}{\to} & C_n \overset{d}{\to} & C_{n-1} \\
\downarrow s & \downarrow f & \downarrow s \\
D_{n+1} \overset{d}{\to} & D_n \overset{d}{\to} & D_{n-1}
\end{array}
$$
1.4 Chain Homotopies

Dropping the subscripts for clarity, we compute

$$df = d(ds + sd) = dsd = (ds + sd)d = f \cdot d.$$

Thus $f = ds + sd$ is a chain map from C to D.

Definition 1.4.3 We say that a chain map $f: C \to D$ is **null homotopic** if there are maps $s_n: C_n \to D_{n+1}$ such that $f = ds + sd$. The maps $\{s_n\}$ are called a **chain contraction** of f.

Exercise 1.4.3 Show that C is a split exact chain complex if and only if the identity map on C is null homotopic.

The chain contraction construction gives us an easy way to proliferate chain maps: if $g: C \to D$ is any chain map, so is $g + (sd + ds)$ for any choice of maps s_n. However, $g + (sd + ds)$ is not very different from g, in a sense that we shall now explain.

Definition 1.4.4 We say that two chain maps f and g from C to D are **chain homotopic** if their difference $f - g$ is null homotopic, that is, if

$$f - g = sd + ds.$$

The maps (s_n) are called a **chain homotopy** from f to g. Finally, we say that $f: C \to D$ is a **chain homotopy equivalence** (Bourbaki uses homotopism) if there is a map $g: D \to C$ such that gf and fg are chain homotopic to the respective identity maps of C and D.

Remark This terminology comes from topology via the following observation. A map f between two topological spaces X and Y induces a map $f_*: S(X) \to S(Y)$ between the corresponding singular chain complexes. It turns out that if f is topologically null homotopic (resp. a homotopy equivalence), then the chain map f_* is null homotopic (resp. a chain homotopy equivalence), and if two maps f and g are topologically homotopic, then f_* and g_* are chain homotopic.

Lemma 1.4.5 If $f: C \to D$ is null homotopic, then every map $f_*: H_n(C) \to H_n(D)$ is zero. If f and g are chain homotopic, then they induce the same maps $H_*(C) \to H_*(D)$.

Proof It is enough to prove the first assertion, so suppose that $f = ds + sd$. Every element of $H_*(C)$ is represented by an n-cycle x. But then $f(x) = d(sx)$. That is, $f(x)$ is an n-boundary in D. As such, $f(x)$ represents 0 in $H_n(D)$. \diamond
Exercise 1.4.4 Consider the homology $H_\ast(C)$ of C as a chain complex with zero differentials. Show that if the complex C is split, then there is a chain homotopy equivalence between C and $H_\ast(C)$. Give an example in which the converse fails.

Exercise 1.4.5 In this exercise we shall show that the chain homotopy classes of maps form a quotient category \mathbf{K} of the category \mathbf{Ch} of all chain complexes. The homology functors H_n on \mathbf{Ch} will factor through the quotient functor $\mathbf{Ch} \to \mathbf{K}$.

1. Show that chain homotopy equivalence is an equivalence relation on the set of all chain maps from C to D. Let $\text{Hom}_\mathbf{K}(C, D)$ denote the equivalence classes of such maps. Show that $\text{Hom}_\mathbf{K}(C, D)$ is an abelian group.

2. Let f and g be chain homotopic maps from C to D. If $u: B \to C$ and $v: D \to E$ are chain maps, show that vf and vgu are chain homotopic. Deduce that there is a category \mathbf{K} whose objects are chain complexes and whose morphisms are given in (1).

3. Let $f_0, f_1, g_0,$ and g_1 be chain maps from C to D such that f_i is chain homotopic to g_i $(i = 1, 2)$. Show that $f_0 + f_1$ is chain homotopic to $g_0 + g_1$. Deduce that \mathbf{K} is an additive category, and that $\mathbf{Ch} \to \mathbf{K}$ is an additive functor.

4. Is \mathbf{K} an abelian category? Explain.

1.5 Mapping Cones and Cylinders

1.5.1 Let $f: B \to C$ be a map of chain complexes. The mapping cone of f is the chain complex cone(f) whose degree n part is $B_{n-1} \oplus C_n$. In order to match other sign conventions, the differential in cone(f) is given by the formula

$$d(b, c) = (-d(b), d(c) - f(B)), \quad (b \in B_{n-1}, c \in C_n).$$

That is, the differential is given by the matrix

$$
\begin{bmatrix}
-d_B & 0 \\
-f & +d_C
\end{bmatrix}
\begin{array}{c}
B_{n-1} \\
C_n
\end{array} \to
\begin{array}{c}
B_{n-2} \\
G_{-1}
\end{array}
$$