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Overview

Differential linear logic axiomatizes a category in which
objects are some sort of space with a smooth structure, i.e. a
way of defining smooth maps between objects.

Linear maps appear as the maps in the base category and
smooth maps in the coKleisli category.

The category CVS of convenient vector spaces and linear
maps completely captures this intuition.

Now that we have some good models, let’s try to apply ideas
from differential topology.

In particular, let’s define differential forms, de Rham
cohomology, integration, etc.

Ultimately, we wish to lift this to manifolds (Cockett,
Cruttwell) which locally look like objects in our category.



Kähler Differentials

One source of abstract differential forms is Algebraic
Geometry. In AG, they are interested in solutions to systems
of polynomial equations.

Even if the field is R or C, the solution set may or may not be
a manifold, due to the existence of singular points.

One can define forms anyway, via Kähler differentials.

Instead of considering the solution set directly, it is more useful
to examine the coordinate ring, i.e. A = k[x1, x2, . . . , xn]/I ,
where I is the ideal generated by the polynomials.

Note that A is a commutative, associative algebra, so this
makes sense in monoidal categories.



Kähler Differentials II: Definitions

The traditional notion of Kähler differentials defines the notion of
a module of A-differential forms with respect to A, where A is a
commutative k-algebra. Let M be a (left) A-module.

Definition

An A-derivation from A to M is a k-linear map ∂ : A→ M such
that ∂(aa′) = a∂(a′) + a′∂(a).

Definition

Let A be a k-algebra. A module of A-differential forms is an
A-module ΩA together with an A-derivation ∂ : A→ ΩA which is
universal in the following sense: for any A-module M, for any
A-derivation ∂′ : A→ M, there exists a unique A-module
homomorphism f : ΩA → M such that ∂′ = ∂f .



Kähler Differentials III: Existence Theorem

A
∂ //

∂′   

ΩA

h
��

M

Lemma

For any commutative k-algebra A, a module of A-differential forms
exists.

One approach is to construct the free A-module generated by the
symbols {da | a ∈ A} divided out by the evident relations, most
significantly d(aa′) = ad(a′) + a′d(a).



Kähler Differentials IV: Example

For the key example, let A = k[x1, x2, . . . , xn], then ΩA is the free
A-module generated by the symbols dx1, dx2, . . . , dxn, so a typical
element of ΩA looks like

f1(x1, x2, . . . , xn)dx1 + f2(x1, x2, . . . , xn)dx2 + fn(x1, x2, . . . , xn)dxn.

Then we have

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + . . .+

∂f

∂xn
dxn

If V is an n-dimensional space and S(V) is the free symmetric
algebra construction, then there are canonical isomorphisms:

ΩA
∼= ΩS(V )

∼= S(V )⊗ V .



Kähler Categories I: Algebra Modalities

Definition

A symmetric monoidal category C is additive if every HomSet
is an abelian group, and this is preserved by composition.

An additive symmetric monoidal category has an algebra
modality if it is equipped with a monad (T , µ, η) such that for
every object C in C, the object, T (C ), has a commutative
associative algebra structure

m : T (C )⊗ T (C )→ T (C ), e : I → T (C )

and this family of associative algebra structures satisfies
evident naturality conditions.

The key example is the !-functor in Cop where C is a model of
linear logic, in particular a differential category.



Kähler Categories II: Definition (RB, Cockett, Porter,
Seely)

Definition

A Kähler category is an additive symmetric monoidal category with

a monad T ,

a (commutative) algebra modality for T ,

for all objects C , a module of T (C )-differential forms
∂C : T (C )→ ΩC , i.e. a T (C )-module ΩC , and a
T (C )-derivation, ∂C : T (C )→ ΩC , which is universal in the
following sense: for every T (C )-module M, and for every
T (C )-derivation ∂′ : T (C )→ M, there exists a unique
T (C )-module map h : ΩC → M such that ∂; h = ∂′.

T (C )
∂ //

∂′ ##

ΩC

h
��

M



Kähler Categories III: Examples

Theorem

The category of vector spaces over an arbitrary field is a Kähler
category, with structure as described above. The monad is the free
symmetric algebra monad, and the map d is the usual differential
as applied to polynomials.

Note that Vecop is a differential category, and the map d is
the canonical deriving transform in the definition of
differential category.

It is reasonable to ask if the opposite of every differential
category is Kähler. We don’t know. At the moment, we need
an extra condition. The condition is minor and every example
satisfies it.



Kähler Categories IV: Property and Theorem

Definition

Let F denote the free, associative algebra monad.

The monad T satisfies Property K if the natural
transformation ϕ : F → T is a componentwise epimorphism.

Theorem (RB, Cockett, Porter, Seely)

If C is a codifferential storage category, whose monad satisfies
Property K, then C is a Kähler category, with ΩC = T (C )⊗ C ,
and the differential being the map d : T (C )→ T (C )⊗ C , the
canonical differential arising from Differential Linear Logic.



Kähler Categories V: Convenient Vector Spaces

Theorem (RB,Ehrhard,Tasson)

The category CVS of convenient vector spaces and linear
continuous maps is a differential storage category.

One can check that in this case the (co)monad ! satisfies property
K, and so:

Theorem

The opposite of the category CVS is a Kähler category.

A very interesting question is to see if the HKR-theorem (discussed
below) holds conveniently.



Wedges in Monoidal Categories

To proceed any further with homological techniques, we will need
constructions not available in arbitrary monoidal categories.

We will need the coequalizer of the maps:

id : V ⊗ V → V ⊗ V and
−c : V ⊗ V → V ⊗ V (where c is the symmetry.)

The result will be denoted V ∧ V .

Similarly, one forms arbitrary wedge products ∧nV . It is the
coequalizer of all of the possible symmetries of ⊗nV ,
multiplied by (-1) to the appropriate power.



Constructing n-forms

Now that we have constructed an object of one-forms, we
wish to combine them and obtain an algebra of forms.

Let Ω2 = Ω1 ∧TC Ω1 be the object of Kähler 2-forms, etc.
Notice that the functor ∧TC is defined to allow elements of
the algebra to pass back and forth across the ∧.

So in a codifferential category, we get a general formula:

Ωn
C = TC ⊗ (∧nC )

Then we take the coproduct of all forms:

Ω•C =
⊕
n

Ωn
C



Differential Graded Algebras I: Definition

Definition

An associative algebra is graded if it can be written
A =

⊕
n∈N An, and multiplication respects the grading, i.e.

Ap · Aq ⊆ Ap+q.

A graded algebra is a differential graded algebra if equipped
with a family of maps d : Ap → Ap+1 such that

d2 = 0
d(ab) = d(a)b + (−1)|a|ad(b) (Graded Leibniz)

Note that we are writing formulas using elements, but these can be
written categorically as well.



Differential Graded Algebras II: Examples

The primary example is the de Rham cohomology of an
n-dimensional manifold M. Here the 0-forms are the smooth
functionals on M, and one defines the differential for 0-forms on a
local chart

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + . . .+

∂f

∂xn
dxn

Then the d operator lifts to arbitrary forms.
We also have:

Theorem

In any codifferential storage category (not necessarily Kähler), the
object Ω•C is a differential graded algebra for all objects C .



Differential Graded Algebras III: Formula for the differential

We need a map d : Ωp → Ωp+1.

TC⊗(∧pC ) −→︸︷︷︸
1

TC⊗(

p⊗
C ) −→︸︷︷︸

2

TC⊗(

p+1⊗
C ) −→︸︷︷︸

3

TC⊗(∧p+1C )

1 This map exists when the coequalizer splits, as it does in most
examples.

2 This is just d ⊗ id followed by associativity.

3 This is the identity in the first component and the quotient in
the second component.

—



Differential Graded Algebras IV: Why this works

In de Rham cohomology, we get d2 = 0 because partial derivatives
commute and the corresponding forms anticommute. We have:

∂2f

∂x∂y
=

∂2f

∂y∂x
BUT dxdy = −dydx

We get the same equation in a (co)differential storage category:

d ; d ⊗ id : TC → TC ⊗ C → TC ⊗ C ⊗ C

is unchanged when followed by a symmetry:

d ; d ⊗ id ; id ⊗ c : TC → TC ⊗ C → TC ⊗ C ⊗ C → TC ⊗ C ⊗ C

This follows from the cocommutativity of the coalgebra structure
of TC .



Differential Graded Algebras V: Cohomology

Whenever you have a DGA, you have a cochain complex, i.e. a
sequence of modules and maps:

C = · · ·C−2 d−2−→ C−1
d−1−→ C 0 d0−→ C 1 d1−→ C 2 · · ·

satisfying d2 = 0, one can associate its cohomology:

Hn(C) =
kernel(dn)

image(dn−1)

So every DGA has a cohomology.



Differential Graded Algebras VI: Ideas From
Noncommutative Geometry

Consider Alain Connes’ interpretation of the result:

Theorem (Gelfand-Naimark)

Every commutative unital C ∗-algebra is the algebra of continuous
complex-valued functions on a compact Hausdorff space.

Connes argues that general (noncommutative) C ∗-algebras should
be viewed as a space of functions on a noncommutative space. A
great deal of traditional analysis is then redone noncommutatively.

By the same argument, Connes argues that one should view a
DGA as the cohomology of a noncommutative manifold. This is
his theory of noncommutative differential geometry. In particular,
one should be able to integrate.



Differential Graded Algebras VII: Cycles

Definition

An n-dimensional cycle on a differential graded algebra
Ω• =

⊕n
k=0 Ωk is a linear map∫

: Ω• → R such that

∫
ωk = 0 if k 6= n, with ωk ∈ Ωk .∫
ωkωl = (−1)kl

∫
ωlωk∫

dωn−1 = 0 (Stokes’ Theorem)

Examples come from integration, as suggested by the syntax. This
definition generalizes nicely to the differential category setting.



Differential Graded Algebras VIII: Cool example of a cycle

Consider smooth functions of compact support on Rn which take
values in Mm(R), the space of m ×m matrices.
Then define: ∫

ωn =

∫
Rn

trace(ωn)

There is the more general theory of de Rham currents, which gives
the same structure. In a differential category, we have a large class
of DGAs. We would be looking at arrows:∫

: Ω• → I the monoidal unit

We could use associative, traced algebras i.e. algebras (A, µ) with
a map

τ : A→ I , such that µ; τ = c ;µ; τ



Hochschild Homology I: Preliminaries

A great deal of structure is contained in the (co)algebra modality
of a model of differential linear logic.

Since each object T (C ) has a (co)algebra structure, we can
associate to it a homology theory, the Hochschild homology.

There is a canonical comparison between the Hochschild
homology and the Kähler differentials.

In nice cases, the smooth algebras, this comparison is an
isomorphism. In the finitely generated case, smooth algebras
correspond to those ideals of polynomials for which the
solution set has no singularities.

We’ll work with the algebras rather than coalgebras since it is the
more classic theory. We will also write formulas using elements, as
this is much easier to read. And again, we need to assume
quotients and (-1), etc.



Hochschild Homology II: Boundary Map

We let A be an associative, unital algebra over a commutative ring
k . Let M be an A-bimodule. Define the k-module of n-chains by
Cn(A,M) = M ⊗ A⊗n. The Hochschild boundary map
b : Cn(A,M)→ Cn−1(A,M) is given by:

b(m, a1, a2, . . . , an) = (ma1, a2, . . . , an) +
n−1∑
i=1

(−1)i (m, a1, a2, . . . , aiai+1, . . . , an)

+(−1)n(anm, a1, a2, . . . , an−1)

One readily checks that b2 = 0 and the resulting homology is
called the Hochschild homology of A with coefficients in M.



Hochschild Homology III: Example

Let R = k[x1, x2, . . . , xn]. One can verify that
H1(R,R) ∼=

⊕n
1 R, and that Hp(R) = ∧pH1(R), ifp ≤ n.

Also remember that for Kahler differentials, we showed that a
typical 1-form looks like

f1(x1, x2, . . . , xn)dx1 + f2(x1, x2, . . . , xn)dx2 +
fn(x1, x2, . . . , xn)dxn.

So Ω1
R
∼=

⊕n
1 R, with Ωp = ∧pΩ1, if p ≤ n.

Theorem

Let R be a commutative k-algebra. Then

H1(R,R) ∼= Ω1
R



Hochschild Homology IV: Antisymmetrization

Theorem (See Loday, Cyclic Homology)

For any commutative k-algebra R, there is a canonical
antisymmetrization map

εn : Ωn
R −→ Hn(R,R)

It is the extension of the previous isomorphism H1(R,R) ∼= Ω1
R ,

but in general is not an isomorphism.

However, for R = k[x1, x2, . . . , xn], we do get an isomorphism at all
levels. When does this hold in general?
When considering R = k[x1, x2, . . . , xn]/I , the map ε is an
isomorphism if and only if (intuitively) the corresponding solution
set has no singularities. This leads to the definition of smoothness
of an algebra. (The formal definition is technical.)



Hochschild Homology V: Hochschild-Kostant-Rosenberg
Theorem

This leads to the definition of smoothness of an algebra. (The
formal definition is technical.) Here’s a special case:

Definition

An algebra of the form A = k[x1, x2, . . . , xn]/I is smooth if the
object Ω1

A is a projective module.

Theorem (HKR)

If A is a finitely generated, smooth commutative k-algebra, then
the map

εn : Ωn
A −→ Hn(A,A)

is an isomorphism for all n.



Hochschild Homology VI: More on HKR

There is an extension of this result to algebras of the form
C∞(M), smooth maps from M, a smooth manifold, to R, due to
Connes. It involves de Rham currents.

Ongoing Project

There is a theorem of Cockett that given an algebra modality
T , every T -algebra (in the sense of monads) (C , ρ : TC → C )
has a canonical commutative algebra structure.

Can we calculate the Kähler n-forms and the Hochschild
homology, based on our calculation in the free case?

What is the abstract version of smoothness? Previous
abstract versions of smoothness did not have a good notion of
Kähler forms.



Smooth Differential Forms I: Discussion

We have a notion of differential form associated to algebras in
the opposite of a differential category.

We want a more direct notion, which applies directly in
differential category, and can be lifted to manifolds.

We should be guided by convenient vector spaces.

Here are key criteria:

We need a differential with d2 = 0.
We should be able to pull back forms along arbitrary smooth
maps.
This pull-back should be functorial.
Pulling back should commute with the differential.

All of these are true in classical differential geometry.

But we have a problem:



Smooth Differential Forms II: More discussion

Theorem (Kriegl,Michor)

All hell breaks loose.

The passage to infinite-dimensional structures reveals a great deal
of new structure, which is both interesting and confusing.

There are two notions of tangent vector, operational and
kinematic tangent vectors. In this case, it’s clear that the
kinematic definition is better. In particular, the kinematic
tangent bundle functor is product preserving. The other isn’t.

There are (at least) 12 distinct possible definitions of
differential form on a convenient manifold.



Smooth Differential Forms III: Proposed Formula:

It turns out, quite nicely, that

the formula we are proposing agrees with the one that Kriegl
and Michor eventually settle on,

the points of our forms correspond to the forms Geoff defined,

our formula for smooth forms is the linear dual of the formula
for Kähler forms,

most, and hopefully all, of the above desired properties hold.

The proposed formula for forms is Ωn
DR(V ) = [!V ⊗ ∧nV ]∗. (Note

this is the linear dual.)

This is obviously functorial on linear maps, but we want it
functorial on smooth maps as well.



Smooth Differential Forms IV: Pulling back along smooth
maps

Given a smooth map f : !V →W , we wish to define
f ∗ : Ωn

DR(W )→ Ωn
DR(V ).

Our formula is the linear dual of the following map:

!V ⊗∧nV →︸︷︷︸
1

!V ⊗ (⊗nV ) →︸︷︷︸
2

!V n+1⊗ (⊗nV ) →︸︷︷︸
3

!V ⊗ [!V ⊗V ]n

1 The splitting of the coequalizer, as before.

2 Using comultiplication on !V to create n + 1 copies of !V .

3 Symmetry.



Smooth Differential Forms V: Pulling back continued

→︸︷︷︸
1

!W ⊗ (⊗nW ) →︸︷︷︸
2

!W ⊗ (∧nW )

1 Uses δ; !f : !V →!W and D[f ] : !V ⊗ V →W .

2 Quotienting to get to the wedge product.

We can show:

Lemma

Given f : !V →W and g : !W → Z , we have (f ; g)∗ = g∗; f ∗.

But we haven’t shown that d ; f ∗ = f ∗; d , as yet.



Future work

Finish present work.

Extend constructions to manifolds (Cockett, Cruttwell),
calculate de Rham cohomology etc in these settings.

There is already a theory of convenient manifolds. Do our
constructions agree? As of now, Yes.

Finiteness manifolds?


