
0.1 The basic bio-economic model of the fish-

ery

In this section, we introduce stock dynamics into the problem of the fishery.
The dynamics are based on the biological mechanics of a fish population.1

0.1.1 The natural growth process

We begin by describing the natural growth of the fish stock in the absence
of human activity. The proposed model is simplified in that it considers only
one fish variety with no interaction between fish species, it does not account
for the age of the fish, and it assumes that only the fish stock size affects the
growth rate of the population. Our analysis is made in continuous time.2

First, let ρ denote the growth rate of the fish stock in the absence of
any environmental constraint; that is, as if the availability of food were not
a constraint to the population’s growth. It is referred to as the intrinsic

growth rate of the stock. With S(t) as the fish stock at time t, we have

Ṡt = ρSt, (1)

where Ṡt ≡ ∂St/∂t is the rate of growth of the fish stock while Ṡt/St is termed
the proportional rate of growth . This implies that with an initial fish stock
equal to S0, we have

St = S0e
ρt. (2)

Clearly, the above is not a reasonable representation of the growth of a fish
stock as it implies boundless growth. Due to a finite availability of nutrients
as well as competition with other species, we wish to incorporate the fact
that only a finite size of the fish stock can be carried by the environment.
We call this the finite carrying capacity , denoted S̄.

It moreover seems reasonable to posit that as the stock size increases,
its proportional rate of growth decreases; that is, Ṡt/St is decreasing in St.

1The basic model which combines both population dynamics and economics is due to
Schaefer 1957 and is often referred to in the literature as the Schaefer model .

2The logistic growth function for population growth that we will derive is attributed
to Verhulst (1838).
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Those properties are well represented by the following logistic growth function

:

G(S(t)) = ρ

(

1−
S(t)

S̄

)

S(t). (3)

G(t) represents the natural rate of change of the fish stock so that, in the
absence of fishing activities, we have Ṡ(t) = G(t). The logistic form implies
that the proportional natural growth rate (Ṡ/S) is maximum when the popu-
lation size is very small; this is due to the fact that environmental constraints
are largely non-existent. Conversely, as the stock size approaches its maxi-
mum carrying capacity S̄, growth falls to zero. One may note that G(S) is
quadratic; this implies that the absolute growth level has a unique maximum
value, termed the maximum sustainable yield , at stock size Ŝ characterized
by G′(Ŝ) = 0. The implied evolution of the population size over time is
illustrated in figure 1.
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Figure 1: The logistic growth function

0.1.2 Fishing activities

In problem ??, a simple case of fishing activities was introduced in terms
of harvest level (done in class). From an economic standpoint, it would be
more useful to instead consider effort levels as the decision unit of fishers, as
it directly determines the costs of the activities. In practice, fishing efforts
encompass a variety of input types such as the number of boat-hours spent
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at sea, the size and number of nets used, the size of a boat and the number
of men operating on it, the radar equipment, etc. For now, we shall simply
assume that effort level is the number of boats, denoted X(t).

It would be unreasonable, however, to assume the harvest rate to be
entirely determined by the effort level. Indeed, this would imply that at any
effort level, one could catch the same amount of fish regardless of how many
there are left in the water. For this reason, it is customary to assume that the
harvest rate increases with the fish stock size. We thus posit the following
harvest function:

y(t) = f(X(t))S(t) with f ′(X) > 0 and f ′′(X) ≤ 0. (4)

This function implies that for a given effort level, the harvest rate increases
linearly with the stock size. It is illustrated in figure 2, where lines y(X1, S)
and y(X2, S) represent harvest levels with two different constant effort levels,
X1 and X2 respectively, X1 < X2.
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Figure 2: Logistic growth and harvesting with a constant effort

In order to apprehend the effect of constant fishing effort X1, suppose
that the stock size is initially at its natural long-run stationary state S̄.
An application of effort X1 leads to a harvest rate that exceeds the natural
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growth of the resource since at stock size S̄, we have y(X1, S̄) > G(S̄) = 0.
Hence, the stock of the resource will decline. Given effort rate X1, one can
see that the harvest rate exceeds the natural growth rate for all stock levels
above S̃1. Point A therefore represents a stationary state since the quantity
harvested equals the natural growth rate, that is, G(S̃1) = y(X1, S̃). In other
words, with effort level X1, one obtains sustainable harvest rate ỹ.

It should be noted that given a constant effort level X1, point A corre-
sponds to a stable stationary state. Indeed, if, for some reason, the stock size
falls below S̃1, its size begins to increase as the natural growth rate exceeds
the harvest rate.

Analogous reasoning leads to point B as another stable stationary state
corresponding to higher effort level X2. Not surprisingly, a higher effort level
leads to a steady-state stock size S̃2 which is smaller than S̃1. What may be
less intuitive is that both effort levels lead to the same sustainable harvest
level ỹ. But the reason should now become clear: Even though effort level
X2 is higher than X1, the associated lower steady-state stock size S̃2 renders
each unit of effort less productive than with a larger stock S̃1. Each effect is
exactly offset by the other to make the harvest rates equal.

The reader may have already noted that X2 corresponds to an inefficient
long-run effort level. Indeed, one can achieve the same harvest rate with
a lower effort level X1. This conclusion would be correct if one were to
consider the purely static reasoning of comparing point A to point B, that
is, as if changing the effort level would lead to an instantaneous jump from
one steady-state to the other. But as we shall see below, when one considers
a truly dynamic setting with the introduction of an interest rate, point B
may become the socially efficient steady-state. The reason being that if one
can invest the additional proceeds from the transition period in projects that
yield a high social return, then it might be worthwhile to increase the effort
to X2.

0.1.3 The yield-effort curve

It should become clear from the above analysis that for any effort level X ,
one can find a corresponding steady-state harvest rate. This leads to the
determination of the steady-state yield-effort curve as illustrated in figure 3.

The peculiar shape of the yield-effort curve is entirely due to the manner
with which the natural rate of growth of the resource depends on its stock
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Figure 3: The steady-state yield-effort curve

size, which we shall refer to as a stock effect .3 Indeed, even in the absence
of congestion effects - i.e. f ′′(X) = 0 - the stock effect causes the yield-effort
curve to be concave, initially increasing up to a sustainable maximum yield

denoted ȳ, and thereafter decreasing to reach zero steady-state harvest at
constant effort level X̄ . At low effort levels, an increase in the effort allows
for a higher catch because a lower stock size corresponds to a higher natural
growth, that is, G′(S) < 0 as can be seen in figure 2. The concavity of the
yield-effort curve is due to the concavity of G(S), which implies that natural
growth increases are less important as S becomes ever smaller. As the stock
size reduces to SMSY , an increase in effort has no effect on output at the
margin; this effort level corresponds to the maximum sustainable yield, as
represented by coordinates XMSY and yMSY . For effort levels above XMSY ,
lower stock sizes lead to lower natural growth sinceG′(S) > 0; increased effort
produces lower steady-state output levels. Sustainable output eventually
reaches zero at effort level X̄ , which corresponds to the minimum effort level
for which the resource is driven to extinction.

Exercise 1 Can you think of a situation where X̄ → ∞?

3See Smith (1968) for a discussion of the distinction between stock and congestion
externalities.
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0.1.4 Some bio-economic equilibria

In order to bring economics into the picture, suppose that each unit of the
resource sells at constant price p and that each unit of effort has a constant
unit cost c. Now a profit maximizing resource manager subject to a positive
time discount rate would seek to maximize the present value of the resource.
For now, however, some insight is gained by simply assuming that the ob-
jective of is to maximize the per-period profit rate. The steady-state total
revenue function is given by TR(X) = pỹ(X) while the total cost function
is TC(X) = cX . Both are represented by curves TR and TC respectively in
figure 4.
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Figure 4: Bio-economic equilibria

Per-period profits are maximized at the effort level X∗ which equates
marginal revenues which marginal costs. We shall refer to this as the re-

stricted entry equilibrium. The positive slope implies that S∗(X∗) > SMSY .
As a result, per-period profit maximization leads one to choose a sustainable
harvest rate which falls short of the maximum sustainable yield.

The positive rents that one obtains at X∗ imply that the average product
of effort exceeds the unit cost c. As observed in section ??, this suggests
that in the absence of exclusion, others who can harvest at the same cost
will be tempted to exploit the resource as well. An open-access situation
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leads to steady-state equilibrium exploitation level XOA characterized by
pỹ(XOA)/XOA = c, that is, total revenues and total costs are equal such
that rents are exhausted.

Figure 4 illustrates a case for which the open-access equilibrium yields a
higher sustainable harvest rate than the exclusive one, which may give the
impression that the open-access equilibrium is preferable to the exclusive one.
This is clearly not the case as the marginal product of effort with free-access
falls short of its cost. To convince yourself of this, note that in the illustrated
case, the marginal product of effort being negative implies that steady-state
output could be increased with a lower effort. But although exclusive ac-
cess per-period profit maximization will always result in a positive marginal
product with a stock size larger than that of the maximum sustainable yield,
the open-access equilibrium may fall on either side; whether this is the case
or not depends on where the total cost and total revenues curves meet each
other.

0.1.5 Open access and the backward-bending supply

curve

In section 0.1.4, we learned that for a given output price, the steady-state
production level varies with the property regime. We now wish to extend
the analysis at the industry level where the price is made endogenous with
demand and supply schedules. To this end, we shall first build the supply
schedules in both open access and exclusive access. We then posit a demand
schedule and look at how variations in the property regime can lead to quite
different market equilibria when combined with the resource’s biological dy-
namics.4

In figure 5, industry supply curves are illustrated in panel b) for exclusive
access and open access, denoted SEX and SOA respectively. Each is built
with the help of panel a). In panel a), three steady state total revenue
curves have been drawn which correspond to three different given price levels:
pA < pB < pC . The revenue curves are thus labeled pAy

ss, pBy
ss and pyCss

and have been drawn according to the yield-effort curve in figure 3. For
convenience, we assume that pB = 1; this allows us to locate the quantities
supplied yss on curve pBy

ss and report it in panel b). The total cost curve
TC illustrated in panel a) is independent of output prices and access regimes.

4The analysis is based on Copes (1970).
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Let us begin by building the open access supply curve SOA in panel b).
In this case, total rents must be completely dissipated, such that the supply
equilibria are represented by points A, B and C in panel a) for the three
different price levels. Given that pB = 1, the steady-state output levels
which correspond to the respective equilibrium input levels XA, XB and XC

are located on curve pBy
ss; it is then used to locate three corresponding

points A, B and C on the supply curve in panel b). The rest of the open-
access supply curve can be built using this procedure by assuming different
price levels in panel a). It results in supply schedule SOA.
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Figure 5: Property regime and industry equilibrium

We note that the supply curve in open access is backward bending . At
sufficiently low output price levels, the steady-state resource stock level is
larger than the maximum sustainable yield stock (SMSY ) size. Consequently,
the higher input effort level induced by a higher output price causes the
supply to increase. On the other hand, when the output price is already
high, the open access equilibrium leads to a steady-state stock level which is
smaller than SMSY and consequently, any increased effort induced by a higher
output price causes the output to fall in steady state. Due to the reproductive
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properties of the resource, we therefore obtain a backward-bending supply

curve in open access.
Turning now to the supply schedule under exclusive access, the supply

equilibria corresponding to prices pA, pB and pC are respectively given by
points A′, B′ and C ′ in panel a), i.e. where the slope of the total revenue is
equal to the slope of the total cost curve. (The reader is encouraged to verify
that the input effort must increase with the price level.) The output levels
that corresponds to those equilibria are again found on curve pBy

ss and are
in panel b) at points A′, B′ and C ′. Proceeding this way with different price
levels, the exclusive access supply schedule SEX can be built.

We note here that under exclusive access, the supply schedule is always
positively sloped. Looking at panel a), this result can be deduced from the
fact that with a positively sloped total cost curve, the equilibrium supply
must be determined by a point on the positively sloped portion of the total
revenue curve. Consequently, the stock size of the resource always lies above
SMSY under exclusive access, with the result that an increased input effort
causes the output to increase.5

We therefore obtain that when the demand schedule is low, as illustrated
by curve DL in panel b), the market equilibrium under open access (point
A) is characterized by a higher output and lower price than under exclu-
sive access (point E). But the converse holds when the demand schedule is
high, as illustrated by curve DH : the open access equilibrium (point C) is
associated with a lower output level and higher price than under exclusive
access (point F ). Comparing the open access equilibrium points A and C,
we further obtain the paradoxical result that an increase in demand leads to
a lower equilibrium output level.

5We shall see below, however, that with a positive discount rate, the steady-state stock
size of the resource may be smaller than SMSY under exclusive access also.
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