
0.1. A FIRST EXAMPLE: LAND AND LOCATIONAL RENTS 1

0.1 A first example: Land and locational rents

Suppose that agricultural production requires only land an labour as inputs.1

Let y denote the total output from a particular plot of land, in units of wheat
bushels. The technology of production is described by total output function
y = f(x), where x is the labour input quantity, say in hours. Function f is
increasing and concave. In figure 1, the output technology is conveniently
summarized by both the average product of labour φ(x) ≡ f(x)/x and its
marginal product f ′(x).
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Figure 1: Output and rent on a single plot of land

We assume that the hourly labour wage is constant and equal to w in
units of wheat bushels. The profit maximizing labour input is thus given by
quantity x∗ such that f ′(x∗) = w. This yields a profit equal to square area
⋄abcd,2 that is, the difference between the average product and the average
wage wage multiplied by the total hours worked. For future analysis, it will
be useful to note that profit can also be represented by the area under the
marginal product curve minus the wage bill, that is, area ⋄aed. We shall
refer to this profit as a rent because it can be achieved by one particular plot
of land which cannot be replicated. To see why, let us consider two plots of
land, each located at a different distance from the market.

Suppose that plots A and B are identical except for the fact that plot A is
located closer to the market than plot B. This translates into a higher “gate

1The analysis in this section is originally attributed to von Thunen (xxxx).
2We use the symbol ⋄ to denote a surface.



2

price” for A’s output due to lower transport costs. Let pA and pB denote
the gate price per wheat bushel obtained at plots A and B respectively, with
pA > pB. We add the new twist that labour hours are inelastically supplied
at a maximum of x̄, that is, xA + xB ≤ x̄. All prices are expressed in terms
of a currency units called the sol and represented by the symbol $.

Exercise 1 *Analyze the case where the total supply of labor is perfectly

elastic at fixed wage w.

The values of labour’s marginal products on each plot are illustrated in
figure 2. The labour input on plot A increases as we move rightward from
origin 0A while the same goes for plot B moving leftward from origin 0B,
where segment length 0A0B = x̄.3 Note that for any given x, the value of
labour’s marginal product is higher on plot A than plot B simply because
pA > pB.
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Figure 2: Locational rents with fixed labor supply

The efficient allocation of labour between both plots is given by xe, which
equates the marginal productivity values. It corresponds to labour quantities
OAxe and 0Bxe working on plots A and B respectively. Note that we purpose-
fully stay silent on how this distribution of workers is achieved in practice.

With such a distribution, the profits on each plots are respectively given by
RA = ⋄abc and RB = ⋄dbe.

3A bar over coordinate points shall denote a segment length.
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With the efficient allocation, we have RA > RB. Plot A generates higher
rents because it commands a higher gate price. This is due to the immovable
fact that it is located closer to the market than plot B and that it cannot
be replicated. It is in this respect that we say that plot A yields higher rents
than plot B. In the example given, such rents are referred to as locational

rents, as first pointed out by von Thunen (xxxx).
If we were to add a third plot C with unit bushel gate price pC < pB, the

efficient equilibrium allocation of labour would be given by

pAf
′(xe

A) = pBf
′(xe

B) = pCf
′(xe

C), (1)

xe
A + xe

B + xe
C = x̄, (2)

as illustrated in figure 3.
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Figure 3: Locational rents and marginal plots

For a far enough distance from the market, one may eventually find that
the gate price of, say, plot E is so low that its marginal product yields
pEf

′(0) < pCf(x
e
C) while equations (1) and (2) remain respected. Plot E is

therefore located too far away from the market to make it efficient to exploit.
The upshot is to imagine a situation with a large number of land plots, each
located farther and farther away from the market center. Efficiency then
dictates an allocation of workers such that at a certain distance from the
market, say at plot D, we have pDf

′(0) = we, where we is the efficient
marginal productivity of labour on the plots being used. All plots located
closer to the market are characterized by a gate price larger than pD, are put
to use, and generate positive rents that decrease with the distance. All those
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located farther away have a lower gate price than pD and are left unused. In
the literature, plot D is referred to as the marginal land.

0.2 A second example: Non-renewable resources

and dynamic rents

We now look at a basic two-period problem for the extraction of a non-
renewable resource. We will see that due to the finite size of the resource
stock, a present-value maximizer will leave some rents to be extracted later.

Let S0 denote the initial stock size of the resource which can be extracted
over two periods, represented by t = 0 and t = 1. A unit of the resource
sells at constant price p at each period. The cost of extraction at period t
depends on the extraction rate only and is represented by function C(Rt),
where Rt is the period-t extraction level and function C is increasing and
convex. Assuming that period-1 gains are discounted at factor β into period
0, the present-value maximizing problem can be expressed as

max
R0,R1

V0 = pR0 − C(R0) + β[pR1 − C(R1)] (3)

s.t. R0 +R1 ≤ S0 (4)

Assuming that the resource constraint is binding, we can conveniently
substitute R1 = S0−R0 into the objective function. This yields the following
first-order condition for a maximum:

∂V0

∂R0

= p− C ′(R∗

0
) + β[−p+ C ′(R∗

1
)] = 0. (5)

This expression indicates that the contribution to present-value V0 of the last
unit extracted at periods 0 and 1 must be equal. If this were not the case, say
with inequality p− C ′(R0) > β[−p+C ′(R1)], then V0 could be increased by
extracting one more unit at period 0 and one less at period 1, and conversely
if the inequality is reversed. p−C ′(Rt) is referred to as the marginal rent at
period t because it concerns only the rent on the last unit extracted.4

The marginal rent curves for each periods are illustrated in figure 4, where
the length of the abscissa is equal to the initial resource stock S0 and the

4It is also sometimes called dynamic rent, user cost, royalty, Hotelling rent, or in situ

rent.
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origin for periods 0 and 1 extraction rates are respectively denoted 00 and
01. Note that the height of the marginal rent curves are expressed in present
value terms, which explains with its height at period 1 is lower than at period
0. In this example, the fact that the whole resource stock can be extracted
at both periods while marginal rents remain positive indicates that the re-
source constraint must be binding; indeed, the last unit extracted contributes
strictly positively to the present value of the resource stock V0.
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Figure 4: Two-period non-renewable resource extraction

At this stage, students are sometimes puzzled by the fact that an optimal
use of the resource does not dictate that the price be equal to the marginal
cost of extraction. This is so here is because with a binding resource con-
straint, the last unit extracted at period 0 is really being taken away from
period 1. Consequently, the total opportunity cost of extraction at period 0
must incorporate the forgone gain in period 1, i.e., p − C ′(R1). Using the
fact that future gains are discounted at factor β, the marginal opportunity
cost of extraction at period 0 is equal to C ′(R0)+β[p−C ′(R1)] and equality
(5) indeed insures that this is equal to the price. This explains why the the
optimal price is above the direct marginal cost of extraction C ′(R0).

The upshot is that due to a non-renewable resource’s limited size, its
optimal use will generally dictate that some present rents be left into the
ground for future benefits. This is another instance of a scarcity rent .

It is important, however, to keep in mind that period 0’s marginal rent
value is endogenous, i.e., its value is determined by the solution to the present-
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value maximizing problem. Indeed, if, for whatever reason, R0 had been
chosen such that p = C ′(R0), the marginal rent would be zero. This is a
fundamental point because as an owner seeks to maximize the present value
of a resource by leaving rents into the ground, tantamount to an investment
decision, one implicitly assumes that she is totally confident that she will
be in a position to reap all the rewards from that investment. Things are
usually not so clearcut in real life. This is exemplified by problem ?? below,
in which a simple change in the institutional setting is shown to drastically
alter the owner’s equilibrium marginal rent.
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