2006 Mid-term Question 8

With this type of the problem, the most crucial part is to properly set-up the problem of the firm. In this particular case, this means that you must write down:

1. All of the firm's choice variables;
2. The firm's objective;
3. The firm's constraints.

In this problem, the firm must choose its input levels: K, F_{D}, F_{N}. It cannot choose its output levels y_{D} and y_{N}, because they are imposed on the firm. This indicates that the problem of the profit maximizing firm is to minimize costs. Hence the following objective:

$$
\min _{K, F_{D}, F_{N}} C=w_{K} K+w_{F}\left(F_{D}+F_{N}\right)
$$

The constraints of the firm are that $y_{D}=4$ and $y_{N}=3$. (Note that we could also add that $y_{T O T}=y_{D}+y_{N}=7$, but this is superfluous.) Given the production function $y_{i}=\sqrt{K F_{i}}$, we can write down the firms problem as:

$$
\begin{gather*}
\min _{K, F_{D}, F_{N}} C=w_{K} K+w_{F}\left(F_{D}+F_{N}\right) \tag{1}\\
\text { s.t. } \sqrt{K F_{D}}=4 \text { and } \sqrt{K F_{N}}=3 . \tag{2}
\end{gather*}
$$

This problem can be solved using the Lagrangian function. Alternatively, we can use the constraints to substitute directly the following:

$$
\begin{gather*}
F_{D}=16 / K, \tag{3}\\
F_{N}=9 / K . \tag{4}
\end{gather*}
$$

Hence, the cost minimization problem is

$$
\begin{align*}
\min _{K, F_{D}, F_{N}} C & =w_{K} K+w_{F}(16 / K+9 / K) \tag{5}\\
\min _{K, F_{D}, F_{N}} C & =w_{K} K+w_{F}(16 / K+9 / K) \\
& =w_{K} K+w_{F}(25 / K)
\end{align*}
$$

Taking the FOC, we get

$$
\begin{equation*}
K^{*}=5 \sqrt{\frac{w_{F}}{w_{K}}} . \tag{6}
\end{equation*}
$$

