ECO 6122: Microeconomic Theory IV

Economics Department University of Ottawa Mid-term exam

Professors: Louis Hotte and/et Marcel Mérette

NB This exam has 2 pages.

Part A. Producer Theory. (50 points)

1. The cost function (20 points)

- 1a) (5 pts) Define what is a cost function.
- 1b) (5 pts) Suppose that the (one-output, n-inputs) production technology exhibits constant returns to scale. Show that the cost function is linear in output.
- 1c) (5 pts) Compare the average and marginal cost functions with constant returns to scale.
- 1d) (5 pts) What can we say about fixed cost with a constant returns to scale technology? Justify.

2. The technology of production (20 points)

Consider a single-output, two-input production technology $y = f(x_1, x_2)$.

- 2a) (5 pts) With the help of a graphic, define what is a convex input requirement set.
- 2b) (5 pts) Explain intuitively what convexity of the input requirement set implies, i.e. why is it a reasonable assumption to make?
- 2c) (5 pts) Can an input requirement set be both convex and non-monotonous? Justify.
- 2d) (5 pts) Can the input requirement set be convex while the production possibilities set is non-convex? Justify.

3. Duality (10 points)

A cost function is given by $c(w_1, w_2, y) = [w_1 + w_2]y$.

- 3a) (5 pts) Derive the conditional factor demands.
- 3b) (5 pts) Derive the associated production function.

Part B. Consumer Theory: True, False or Uncertain. (18 points). Respond to the following 3 questions. Justify your response.

- A consumer with a direct utility function u(x₁, x₂) = min(x₁, x₂) has the following indirect utility function: v(p, m) = max{m/p₁, m/p₂}.
- 2. If $\eta_i = \frac{\partial x_i(p,m)}{\partial m} \frac{m}{x_i(p,m)}$ and $s_i = \frac{px_i(p,m)}{m}$, then it is always true that $\sum_{i=1}^K s_i \eta_i = 0$, where K is the number of goods.
- The substitution matrix is negative semi-definite because the indirect utility function is quasi-convex.

Part C. Consumer Theory Problems. Respond to the following 2 questions. (32 points)

- (12 points) Prove that if preferences are strictly convex and prices are all strictly
 positive, then there is a unique bundle x(p,m) that maximizes utility on the budget
 set B(p,m).
- 5. **(20 points)** Suppose a household has the following CES direct utility function, $u(x_1, x_2) = (ax_1^{\rho} + bx_2^{\rho})^{1/\rho}$, where $0 \neq \rho < 1$, and the following budget constraint $p_1x_1 + p_2x_2 \leq m$.
 - a. Find the Marshallian demand functions.
 - Find the indirect utility function
 - c. Show that the indirect utility function is homogenous of degree zero in p and m.
 - d. Find the expenditure function
 - e. Show that the expenditure function is concave in p.
 - f. Find the Hicksians demand functions