ECO 6122: Microeconomic Theory IV
Economics Department
University of Ottawa
2nd mid-term exam
Time allotted: 2 hours
Professor: Louis Hotte

NB This questionnaire has 2 pages. Some formulae are provided in the APPENDIX (that you may or may not need).

1. (20 points) The Law of Demand

A decrease in the own price of a normal good will cause quantity demanded to increase. If an own price decrease causes a decrease in quantity demanded, the good must be inferior.
a) (10) Prove each statement in the Law of Demand.
b) (10) Prove that the converse of each statement in the Law of Demand is NOT true.

2. (15 points) The indirect utility function

a) (5) Define the indirect utility function in both words and formally.
b) (5) Show that the indirect utility function is homogeneous of degree zero in (\mathbf{p}, y).
c) (5) Demonstrate Roy's identity.

3. (15 points) Consumer demand

Consider the indirect utility function given by

$$
v\left(p_{1}, p_{2}, y\right)=\frac{y}{p_{1}+p_{2}}
$$

a) (5) What are the (ordinary) demand functions?
b) (5) What is the expenditure function?
c) (5) What is the direct utility function?

APPENDIX: Some axioms, definitions and properties

$$
\begin{aligned}
& \frac{\partial x_{i}}{\partial p_{j}}=\frac{\partial x_{i}^{h}}{\partial p_{j}}-x_{j} \frac{\partial x_{i}}{\partial y} \\
& x_{i}=-\frac{\partial v / \partial p_{i}}{\partial v / \partial y} \\
& p_{i}(\mathbf{x})=\frac{\partial u / \partial x_{i}}{\sum_{j=1}^{n} x_{j}\left(\partial u / \partial x_{j}\right)}
\end{aligned}
$$

Axioms of consumer choice:

1. Completeness. Either $\mathbf{x}^{1} \succsim \mathbf{x}^{2}$ or $\mathbf{x}^{2} \succsim \mathbf{x}^{1}$.
2. Transitivity. If $\mathbf{x}^{1} \succsim \mathbf{x}^{2}$ and $\mathbf{x}^{2} \succsim \mathbf{x}^{3}$, then $\mathbf{x}^{1} \succsim \mathbf{x}^{3}$.
3. Continuity. $\forall \mathbf{x}$ the sets $\succsim(\mathbf{x})$ and $\precsim(\mathbf{x})$ are closed.
4. Strict monotonicity. $\forall \mathbf{x}^{0}, \mathbf{x}^{1}$, if $\mathbf{x}^{0} \geq \mathbf{x}^{1}$ then $\mathbf{x}^{0} \succsim \mathbf{x}^{1}$, while if $\mathrm{x}^{0} \gg \mathrm{x}^{1}$ then $\mathrm{x}^{0} \succ \mathrm{x}^{1}$.
5. Convexity. If $\mathbf{x}^{0} \succsim \mathbf{x}^{1}$, then $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{0} \succsim \mathbf{x}^{0}, \forall t \in[0,1]$.
6. Strict convexity. If $\mathbf{x}^{1} \neq \mathbf{x}^{0}$ and $\mathbf{x}^{1} \succsim \mathbf{x}^{0}$, then $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{0} \succsim \mathbf{x}^{0}, \forall t \in(0,1)$.

Axioms of choice under uncertainty:

1. Completeness. Either $g \succsim g^{\prime}$ or $g^{\prime} \succsim g$.
2. Transitivity. If $g \succsim g^{\prime}$ and $g^{\prime} \succsim g^{\prime \prime}$, then $g \succsim g^{\prime \prime}$.
3. Continuity. $\exists \alpha \in[0,1]$ s.t. $g \sim\left(\alpha \oplus a_{1},\left(1-\alpha \oplus a_{n}\right)\right)$.
4. Monotonicity. $\forall \alpha, \beta \in[0,1],\left(\alpha \oplus a_{1},\left(1-\alpha \oplus a_{n}\right)\right) \succsim\left(\beta \oplus a_{1},\left(1-\beta \oplus a_{n}\right)\right)$ iff $\alpha \geq \beta$.
5. Substitution. If $g=\left(p_{1} \oplus g_{1}, \ldots, p_{k} \oplus g_{k}\right)$ and $h=\left(p_{1} \oplus h_{1}, \ldots, p_{k} \oplus h_{k}\right)$ and $h_{i} \sim g_{i}, \forall i$, then $h \sim h$.
6. Reduction to simple gambles.

Arrow-Pratt measure of risk-aversion:

$$
R_{a}(w) \equiv \frac{-u^{\prime \prime}(w)}{u^{\prime}(w)}
$$

Some definitions:

1. Quasiconcave function. $f: D \rightarrow R$ is quasiconcave iff, for all \mathbf{x}^{1} and \mathbf{x}^{2} in $D, f\left(\mathbf{x}^{t}\right) \geq \min \left[f\left(\mathbf{x}^{1}\right), f\left(\mathbf{x}^{2}\right)\right]$ for all $t \in[0,1]$.
2. Concave function. $f: D \rightarrow R$ is a concave function if for all \mathbf{x}^{1} and \mathbf{x}^{2} in $D, f\left(\mathbf{x}^{t}\right) \geq t f\left(\mathbf{x}^{1}\right)+(1-t) f\left(\mathbf{x}^{2}\right)$ for all $t \in[0,1]$.
3. Convex set. $S \in \Re^{n}$ is a convex set if for all $\mathbf{x}^{1} \in S$ and $\mathbf{x}^{2} \in S$, we have $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{2} \in S$ for all $t \in[0,1]$.
