ECO 6122: Microeconomic Theory IV	2nd mid-term exam
Economics Department	Time allotted: 2 hours
University of Ottawa	Professor: Louis Hotte

NB This questionnaire has 3 pages. Some formulae are provided in the APPENDIX (that you may or may not need).

1. (15 points) The profit function

- a) (5) Define the profit function in *both* words and formally.
- b) (5) Demonstrate (formally) that the profit function is convex in input and output prices.
- c) (5) Suppose that the output price fluctuates in such a way that 50% of the times, it equals 0.5P, and 50% of the times, it equals 1.5P. Those fluctuations are perfectly predictable. Show that for the producer, this is preferable to a price that is perfectly stable at the mean P. (Hint: Use the convexity property.)

2. (7 points) Integrability Theorem

Suppose that there are three goods and that a consumer's demand behaviour is summarized by the functions

$$x_i(p_1, p_2, p_3, y) = \frac{\alpha_i y}{p_i}, \ i = 1, 2, 3,$$

where $\alpha_i > 0$ and $\alpha_1 + \alpha_2 + \alpha_3 = 1$.

- a) (5) Suppose that you want to verify that the associated vector of demands $\mathbf{x}(\mathbf{p}, y)$ is utility generated. Describe <u>briefly</u> how you would go about that. (NB I don't expect you to go into the mathematical details here. Just describe the procedure.)
- b) (2) What do we mean by "utility generated"?

3. (15 points) Income and substitution effects

- a) (5) Suppose that there are only two goods to consume, goods 1 and 2. With the help of a twopart graphical representation, explain how the total effect of a decrease in the price of good 1 can be decomposed into a substitution effect and an income effect.
- b) (5) Suppose now that there are n goods to consume, $i \in \{1, 2, ..., n\}$, and let $\mathbf{x}(\mathbf{p}, y)$ be the consumer's Marshallian demand system. Define the Slutsky matrix $\mathbf{s}(\mathbf{p}, y)$ of price and income responses.
- c) (5) Show that $\mathbf{s}(\mathbf{p}, y)$ must be symmetric and negative semidefinite.

4. (10 points) Fixed factors

Prove that short-run supply and short-run variable input demands are homogeneous of degree zero in p and \mathbf{w} .

APPENDIX: Some axioms, definitions and properties

$$\begin{split} \frac{\partial x_i}{\partial p_j} &= \frac{\partial x_i^h}{\partial p_j} - x_j \frac{\partial x_i}{\partial y} \\ x_i &= -\frac{\partial v / \partial p_i}{\partial v / \partial y} \end{split}$$

$$p_i(\mathbf{x}) = \frac{\partial u/\partial x_i}{\sum_{j=1}^n x_j(\partial u/\partial x_j)}$$

Axioms of consumer choice:

- 1. Completeness. Either $\mathbf{x}^1 \succeq \mathbf{x}^2$ or $\mathbf{x}^2 \succeq \mathbf{x}^1$.
- 2. Transitivity. If $\mathbf{x}^1 \succeq \mathbf{x}^2$ and $\mathbf{x}^2 \succeq \mathbf{x}^3$, then $\mathbf{x}^1 \succeq \mathbf{x}^3$.
- 3. Continuity. $\forall \mathbf{x}$ the sets $\succsim (\mathbf{x})$ and $\precsim (\mathbf{x})$ are closed.
- 4. Strict monotonicity. $\forall \mathbf{x}^0, \mathbf{x}^1$, if $\mathbf{x}^0 \geq \mathbf{x}^1$ then $\mathbf{x}^0 \succeq \mathbf{x}^1$, while if $\mathbf{x}^0 \gg \mathbf{x}^1$ then $\mathbf{x}^0 \succ \mathbf{x}^1$.
- 5. Convexity. If $\mathbf{x}^0 \succeq \mathbf{x}^1$, then $t\mathbf{x}^1 + (1-t)\mathbf{x}^0 \succeq \mathbf{x}^0, \forall t \in [0,1]$.
- 6. Strict convexity. If $\mathbf{x}^1 \neq \mathbf{x}^0$ and $\mathbf{x}^1 \succeq \mathbf{x}^0$, then $t\mathbf{x}^1 + (1-t)\mathbf{x}^0 \succeq \mathbf{x}^0, \forall t \in (0,1)$.

Axioms of choice under uncertainty:

- 1. Completeness. Either $g \succeq g'$ or $g' \succeq g$.
- 2. Transitivity. If $g \succeq g'$ and $g' \succeq g''$, then $g \succeq g''$.
- 3. Continuity. $\exists \alpha \in [0, 1]$ s.t. $g \sim (\alpha \oplus a_1, (1 \alpha \oplus a_n)).$
- 4. Monotonicity. $\forall \alpha, \beta \in [0, 1], (\alpha \oplus a_1, (1 \alpha \oplus a_n)) \succeq (\beta \oplus a_1, (1 \beta \oplus a_n)) \text{ iff } \alpha \geq \beta.$
- 5. Substitution. If $g = (p_1 \oplus g_1, ..., p_k \oplus g_k)$ and $h = (p_1 \oplus h_1, ..., p_k \oplus h_k)$ and $h_i \sim g_i, \forall i$, then $h \sim h$.
- 6. Reduction to simple gambles. ...

Arrow-Pratt measure of risk-aversion:

$$R_a(w) \equiv \frac{-u''(w)}{u'(w)}$$

Some definitions:

- 1. Quasiconcave function. $f: D \to R$ is quasiconcave iff, for all \mathbf{x}^1 and \mathbf{x}^2 in D, $f(\mathbf{x}^t) \ge \min[f(\mathbf{x}^1), f(\mathbf{x}^2)]$ for all $t \in [0, 1]$.
- 2. Concave function. $f: D \to R$ is a concave function if for all \mathbf{x}^1 and \mathbf{x}^2 in D, $f(\mathbf{x}^t) \ge tf(\mathbf{x}^1) + (1-t)f(\mathbf{x}^2)$ for all $t \in [0, 1]$.
- 3. Convex set. $S \in \Re^n$ is a convex set if for all $\mathbf{x}^1 \in S$ and $\mathbf{x}^2 \in S$, we have $t\mathbf{x}^1 + (1-t)\mathbf{x}^2 \in S$ for all $t \in [0,1]$.