ECO 6122: Microeconomic Theory IV
Economics Department
University of Ottawa
2nd mid-term exam
Time allotted: 2 hours
Professor: Louis Hotte

NB This questionnaire has 3 pages. Some formulae are provided in the APPENDIX (that you may or may not need).

1. (15 points) The profit function

a) (5) Define the profit function in both words and formally.
b) (5) Demonstrate (formally) that the profit function is convex in input and output prices.
c) (5) Suppose that the output price fluctuates in such a way that 50% of the times, it equals $0.5 P$, and 50% of the times, it equals $1.5 P$. Those fluctuations are perfectly predictable. Show that for the producer, this is preferable to a price that is perfectly stable at the mean P. (Hint: Use the convexity property.)

2. (7 points) Integrability Theorem

Suppose that there are three goods and that a consumer's demand behaviour is summarized by the functions

$$
x_{i}\left(p_{1}, p_{2}, p_{3}, y\right)=\frac{\alpha_{i} y}{p_{i}}, \quad i=1,2,3
$$

where $\alpha_{i}>0$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$.
a) (5) Suppose that you want to verify that the associated vector of demands $\mathbf{x}(\mathbf{p}, y)$ is utility generated. Describe briefly how you would go about that. (NB I don't expect you to go into the mathematical details here. Just describe the procedure.)
b) (2) What do we mean by "utility generated"?

3. (15 points) Income and substitution effects

a) (5) Suppose that there are only two goods to consume, goods 1 and 2 . With the help of a twopart graphical representation, explain how the total effect of a decrease in the price of good 1 can be decomposed into a substitution effect and an income effect.
b) (5) Suppose now that there are n goods to consume, $i \in\{1,2, \ldots, n\}$, and let $\mathbf{x}(\mathbf{p}, y)$ be the consumer's Marshallian demand system. Define the Slutsky matrix $\mathbf{s}(\mathbf{p}, y)$ of price and income responses.
c) (5) Show that $\mathbf{s}(\mathbf{p}, y)$ must be symmetric and negative semidefinite.
4. (10 points) Fixed factors

Prove that short-run supply and short-run variable input demands are homogeneous of degree zero in p and \mathbf{w}.

APPENDIX: Some axioms, definitions and properties

$$
\begin{aligned}
& \frac{\partial x_{i}}{\partial p_{j}}=\frac{\partial x_{i}^{h}}{\partial p_{j}}-x_{j} \frac{\partial x_{i}}{\partial y} \\
& x_{i}=-\frac{\partial v / \partial p_{i}}{\partial v / \partial y} \\
& p_{i}(\mathbf{x})=\frac{\partial u / \partial x_{i}}{\sum_{j=1}^{n} x_{j}\left(\partial u / \partial x_{j}\right)}
\end{aligned}
$$

Axioms of consumer choice:

1. Completeness. Either $\mathbf{x}^{1} \succsim \mathbf{x}^{2}$ or $\mathbf{x}^{2} \succsim \mathbf{x}^{1}$.
2. Transitivity. If $\mathbf{x}^{1} \succsim \mathbf{x}^{2}$ and $\mathbf{x}^{2} \succsim \mathbf{x}^{3}$, then $\mathbf{x}^{1} \succsim \mathbf{x}^{3}$.
3. Continuity. $\forall \mathbf{x}$ the sets $\succsim(\mathbf{x})$ and $\precsim(\mathbf{x})$ are closed.
4. Strict monotonicity. $\forall \mathbf{x}^{0}, \mathbf{x}^{1}$, if $\mathbf{x}^{0} \geq \mathbf{x}^{1}$ then $\mathbf{x}^{0} \succsim \mathbf{x}^{1}$, while if $\mathrm{x}^{0} \gg \mathrm{x}^{1}$ then $\mathrm{x}^{0} \succ \mathrm{x}^{1}$.
5. Convexity. If $\mathbf{x}^{0} \succsim \mathbf{x}^{1}$, then $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{0} \succsim \mathbf{x}^{0}, \forall t \in[0,1]$.
6. Strict convexity. If $\mathbf{x}^{1} \neq \mathbf{x}^{0}$ and $\mathbf{x}^{1} \succsim \mathbf{x}^{0}$, then $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{0} \succsim \mathbf{x}^{0}, \forall t \in(0,1)$.

Axioms of choice under uncertainty:

1. Completeness. Either $g \succsim g^{\prime}$ or $g^{\prime} \succsim g$.
2. Transitivity. If $g \succsim g^{\prime}$ and $g^{\prime} \succsim g^{\prime \prime}$, then $g \succsim g^{\prime \prime}$.
3. Continuity. $\exists \alpha \in[0,1]$ s.t. $g \sim\left(\alpha \oplus a_{1},\left(1-\alpha \oplus a_{n}\right)\right)$.
4. Monotonicity. $\forall \alpha, \beta \in[0,1],\left(\alpha \oplus a_{1},\left(1-\alpha \oplus a_{n}\right)\right) \succsim\left(\beta \oplus a_{1},\left(1-\beta \oplus a_{n}\right)\right)$ iff $\alpha \geq \beta$.
5. Substitution. If $g=\left(p_{1} \oplus g_{1}, \ldots, p_{k} \oplus g_{k}\right)$ and $h=\left(p_{1} \oplus h_{1}, \ldots, p_{k} \oplus h_{k}\right)$ and $h_{i} \sim g_{i}, \forall i$, then $h \sim h$.
6. Reduction to simple gambles.

Arrow-Pratt measure of risk-aversion:

$$
R_{a}(w) \equiv \frac{-u^{\prime \prime}(w)}{u^{\prime}(w)}
$$

Some definitions:

1. Quasiconcave function. $f: D \rightarrow R$ is quasiconcave iff, for all \mathbf{x}^{1} and \mathbf{x}^{2} in $D, f\left(\mathbf{x}^{t}\right) \geq \min \left[f\left(\mathbf{x}^{1}\right), f\left(\mathbf{x}^{2}\right)\right]$ for all $t \in[0,1]$.
2. Concave function. $f: D \rightarrow R$ is a concave function if for all \mathbf{x}^{1} and \mathbf{x}^{2} in $D, f\left(\mathbf{x}^{t}\right) \geq t f\left(\mathbf{x}^{1}\right)+(1-t) f\left(\mathbf{x}^{2}\right)$ for all $t \in[0,1]$.
3. Convex set. $S \in \Re^{n}$ is a convex set if for all $\mathbf{x}^{1} \in S$ and $\mathbf{x}^{2} \in S$, we have $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{2} \in S$ for all $t \in[0,1]$.
