February 4th 2015

ECO 6122: Microeconomic Theory IV	First mid-term exam
Economics Department	Time allotted: 2 hours $% \left({{{\left({{{\left({{{\left({{{\left({{{c}}} \right)}} \right.}$
University of Ottawa	Professor: Louis Hotte

NB This questionnaire has 2 pages. Some formulae are provided in the APPENDIX (that you may or may not need).

1. (20 points) The expenditure function

- a) (5) Define the expenditure function in *both* words and formally.
- b) (7) Demonstrate (formally) that the expenditure function is concave in prices.
- c) (8) Does convexity of preferences play a role in explaining the price-concavity of the expenditure function? Provide an intuitive explanation with the help of a simple graphic.

2. (20 points) A consumption bundle is represented by a vector $\mathbf{x} \in \Re^n_+$. We represent a consumer's preferences by a binary relation \succeq , i.e., if $\mathbf{x}^1 \succeq \mathbf{x}^2$, we say that \mathbf{x}^1 is at least as good as \mathbf{x}^2 . Assume that \succeq can be represented by a real-valued function $u : \Re^n_+ \to \Re$, i.e., for all $\mathbf{x}^0, \mathbf{x}^1 \in \Re^n_+, u(\mathbf{x}^0) \ge u(\mathbf{x}^1) \Leftrightarrow \mathbf{x}^0 \succeq \mathbf{x}^1$. $u : \Re^n_+ \to \Re$.

Show that $u(\mathbf{x})$ is quasiconcave if and only if \succeq is convex. (Hint: Proceed by contradiction.)

3. (30 points) Suppose that a consumer's welfare depends on the quantities of agricultural goods x_1 and manufactured goods x_2 that she consumes. Suppose more precisely that her utility level can be represented by the following utility function:

$$u(x_1, x_2) = (x_1 - \alpha_1)^{1-\theta} (x_2 - \alpha_2)^{\theta},$$

where α_i are positive parameter values and $\theta \in (0, 1)$. The respective prices of the goods are p_1 and p_2 . The consumer's income is y.

- a) (5) Write down the consumer's problem.
- b) (5) Express the Langragian function for this problem and give the first-order conditions.
- c) (10) Derive the *indirect utility function*. (Explain briefly your steps. If you don't, I can't give much partial marks in case you make algebraic mistakes.)
- d) (5) Derive the (ordinary) demand functions.
- e) (5) If you were provided with the indirect utility function only, how would proceed to find this consumer's demand for manufactured goods?

APPENDIX: Some axioms, definitions and properties

$$\begin{split} \frac{\partial x_i}{\partial p_j} &= \frac{\partial x_i^h}{\partial p_j} - x_j \frac{\partial x_i}{\partial y} \\ x_i &= -\frac{\partial v / \partial p_i}{\partial v / \partial y} \end{split}$$

$$p_i(\mathbf{x}) = \frac{\partial u/\partial x_i}{\sum_{j=1}^n x_j(\partial u/\partial x_j)}$$

Axioms of consumer choice:

- 1. Completeness. Either $\mathbf{x}^1 \succeq \mathbf{x}^2$ or $\mathbf{x}^2 \succeq \mathbf{x}^1$.
- 2. Transitivity. If $\mathbf{x}^1 \succeq \mathbf{x}^2$ and $\mathbf{x}^2 \succeq \mathbf{x}^3$, then $\mathbf{x}^1 \succeq \mathbf{x}^3$.
- 3. Continuity. $\forall \mathbf{x}$ the sets $\succsim (\mathbf{x})$ and $\precsim (\mathbf{x})$ are closed.
- 4. Strict monotonicity. $\forall \mathbf{x}^0, \mathbf{x}^1$, if $\mathbf{x}^0 \geq \mathbf{x}^1$ then $\mathbf{x}^0 \succeq \mathbf{x}^1$, while if $\mathbf{x}^0 \gg \mathbf{x}^1$ then $\mathbf{x}^0 \succ \mathbf{x}^1$.
- 5. Convexity. If $\mathbf{x}^0 \succeq \mathbf{x}^1$, then $t\mathbf{x}^1 + (1-t)\mathbf{x}^0 \succeq \mathbf{x}^0, \forall t \in [0,1]$.
- 6. Strict convexity. If $\mathbf{x}^1 \neq \mathbf{x}^0$ and $\mathbf{x}^1 \succeq \mathbf{x}^0$, then $t\mathbf{x}^1 + (1-t)\mathbf{x}^0 \succeq \mathbf{x}^0, \forall t \in (0,1)$.

Axioms of choice under uncertainty:

- 1. Completeness. Either $g \succeq g'$ or $g' \succeq g$.
- 2. Transitivity. If $g \succeq g'$ and $g' \succeq g''$, then $g \succeq g''$.
- 3. Continuity. $\exists \alpha \in [0, 1]$ s.t. $g \sim (\alpha \oplus a_1, (1 \alpha \oplus a_n)).$
- 4. Monotonicity. $\forall \alpha, \beta \in [0, 1], (\alpha \oplus a_1, (1 \alpha \oplus a_n)) \succeq (\beta \oplus a_1, (1 \beta \oplus a_n)) \text{ iff } \alpha \geq \beta.$
- 5. Substitution. If $g = (p_1 \oplus g_1, ..., p_k \oplus g_k)$ and $h = (p_1 \oplus h_1, ..., p_k \oplus h_k)$ and $h_i \sim g_i, \forall i$, then $h \sim h$.
- 6. Reduction to simple gambles. ...

Arrow-Pratt measure of risk-aversion:

$$R_a(w) \equiv \frac{-u''(w)}{u'(w)}$$

Some definitions:

- 1. Quasiconcave function. $f: D \to R$ is quasiconcave iff, for all \mathbf{x}^1 and \mathbf{x}^2 in D, $f(\mathbf{x}^t) \ge \min[f(\mathbf{x}^1), f(\mathbf{x}^2)]$ for all $t \in [0, 1]$.
- 2. Concave function. $f: D \to R$ is a concave function if for all \mathbf{x}^1 and \mathbf{x}^2 in D, $f(\mathbf{x}^t) \ge tf(\mathbf{x}^1) + (1-t)f(\mathbf{x}^2)$ for all $t \in [0, 1]$.
- 3. Convex set. $S \in \Re^n$ is a convex set if for all $\mathbf{x}^1 \in S$ and $\mathbf{x}^2 \in S$, we have $t\mathbf{x}^1 + (1-t)\mathbf{x}^2 \in S$ for all $t \in [0,1]$.