ECO 6122: Microeconomic Theory IV
Economics Department
University of Ottawa
First mid-term exam
Time allotted: 2 hours
Professor: Louis Hotte

NB This questionnaire has 2 pages. Some formulae are provided in the APPENDIX (that you may or may not need).

1. (20 points) The expenditure function

a) (5) Define the expenditure function in both words and formally.
b) (7) Demonstrate (formally) that the expenditure function is concave in prices.
c) (8) Does convexity of preferences play a role in explaining the price-concavity of the expenditure function? Provide an intuitive explanation with the help of a simple graphic.
2. (20 points) A consumption bundle is represented by a vector $\mathbf{x} \in \Re_{+}^{n}$. We represent a consumer's preferences by a binary relation \succsim, i.e., if $\mathbf{x}^{1} \succsim \mathbf{x}^{2}$, we say that \mathbf{x}^{1} is at least as good as \mathbf{x}^{2}. Assume that \succsim can be represented by a real-valued function $u: \Re_{+}^{n} \rightarrow \Re$, i.e., for all $\mathbf{x}^{0}, \mathbf{x}^{1} \in \Re_{+}^{n}, u\left(\mathbf{x}^{0}\right) \geq u\left(\mathbf{x}^{1}\right) \Leftrightarrow \mathbf{x}^{0} \succsim \mathbf{x}^{1}$. $u: \Re_{+}^{n} \rightarrow \Re$.

Show that $u(\mathbf{x})$ is quasiconcave if and only if \succsim is convex. (Hint: Proceed by contradiction.)
3. (30 points) Suppose that a consumer's welfare depends on the quantities of agricultural goods x_{1} and manufactured goods x_{2} that she consumes. Suppose more precisely that her utility level can be represented by the following utility function:

$$
u\left(x_{1}, x_{2}\right)=\left(x_{1}-\alpha_{1}\right)^{1-\theta}\left(x_{2}-\alpha_{2}\right)^{\theta},
$$

where α_{i} are positive parameter values and $\theta \in(0,1)$. The respective prices of the goods are p_{1} and p_{2}. The consumer's income is y.
a) (5) Write down the consumer's problem.
b) (5) Express the Langragian function for this problem and give the first-order conditions.
c) (10) Derive the indirect utility function. (Explain briefly your steps. If you don't, I can't give much partial marks in case you make algebraic mistakes.)
d) (5) Derive the (ordinary) demand functions.
e) (5) If you were provided with the indirect utility function only, how would proceed to find this consumer's demand for manufactured goods?

APPENDIX: Some axioms, definitions and properties

$$
\begin{aligned}
& \frac{\partial x_{i}}{\partial p_{j}}=\frac{\partial x_{i}^{h}}{\partial p_{j}}-x_{j} \frac{\partial x_{i}}{\partial y} \\
& x_{i}=-\frac{\partial v / \partial p_{i}}{\partial v / \partial y} \\
& p_{i}(\mathbf{x})=\frac{\partial u / \partial x_{i}}{\sum_{j=1}^{n} x_{j}\left(\partial u / \partial x_{j}\right)}
\end{aligned}
$$

Axioms of consumer choice:

1. Completeness. Either $\mathbf{x}^{1} \succsim \mathbf{x}^{2}$ or $\mathbf{x}^{2} \succsim \mathbf{x}^{1}$.
2. Transitivity. If $\mathbf{x}^{1} \succsim \mathbf{x}^{2}$ and $\mathbf{x}^{2} \succsim \mathbf{x}^{3}$, then $\mathbf{x}^{1} \succsim \mathbf{x}^{3}$.
3. Continuity. $\forall \mathbf{x}$ the sets $\succsim(\mathbf{x})$ and $\precsim(\mathbf{x})$ are closed.
4. Strict monotonicity. $\forall \mathbf{x}^{0}, \mathbf{x}^{1}$, if $\mathbf{x}^{0} \geq \mathbf{x}^{1}$ then $\mathbf{x}^{0} \succsim \mathbf{x}^{1}$, while if $\mathrm{x}^{0} \gg \mathrm{x}^{1}$ then $\mathrm{x}^{0} \succ \mathrm{x}^{1}$.
5. Convexity. If $\mathbf{x}^{0} \succsim \mathbf{x}^{1}$, then $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{0} \succsim \mathbf{x}^{0}, \forall t \in[0,1]$.
6. Strict convexity. If $\mathbf{x}^{1} \neq \mathbf{x}^{0}$ and $\mathbf{x}^{1} \succsim \mathbf{x}^{0}$, then $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{0} \succsim \mathbf{x}^{0}, \forall t \in(0,1)$.

Axioms of choice under uncertainty:

1. Completeness. Either $g \succsim g^{\prime}$ or $g^{\prime} \succsim g$.
2. Transitivity. If $g \succsim g^{\prime}$ and $g^{\prime} \succsim g^{\prime \prime}$, then $g \succsim g^{\prime \prime}$.
3. Continuity. $\exists \alpha \in[0,1]$ s.t. $g \sim\left(\alpha \oplus a_{1},\left(1-\alpha \oplus a_{n}\right)\right)$.
4. Monotonicity. $\forall \alpha, \beta \in[0,1],\left(\alpha \oplus a_{1},\left(1-\alpha \oplus a_{n}\right)\right) \succsim\left(\beta \oplus a_{1},\left(1-\beta \oplus a_{n}\right)\right)$ iff $\alpha \geq \beta$.
5. Substitution. If $g=\left(p_{1} \oplus g_{1}, \ldots, p_{k} \oplus g_{k}\right)$ and $h=\left(p_{1} \oplus h_{1}, \ldots, p_{k} \oplus h_{k}\right)$ and $h_{i} \sim g_{i}, \forall i$, then $h \sim h$.
6. Reduction to simple gambles.

Arrow-Pratt measure of risk-aversion:

$$
R_{a}(w) \equiv \frac{-u^{\prime \prime}(w)}{u^{\prime}(w)}
$$

Some definitions:

1. Quasiconcave function. $f: D \rightarrow R$ is quasiconcave iff, for all \mathbf{x}^{1} and \mathbf{x}^{2} in $D, f\left(\mathbf{x}^{t}\right) \geq \min \left[f\left(\mathbf{x}^{1}\right), f\left(\mathbf{x}^{2}\right)\right]$ for all $t \in[0,1]$.
2. Concave function. $f: D \rightarrow R$ is a concave function if for all \mathbf{x}^{1} and \mathbf{x}^{2} in $D, f\left(\mathbf{x}^{t}\right) \geq t f\left(\mathbf{x}^{1}\right)+(1-t) f\left(\mathbf{x}^{2}\right)$ for all $t \in[0,1]$.
3. Convex set. $S \in \Re^{n}$ is a convex set if for all $\mathbf{x}^{1} \in S$ and $\mathbf{x}^{2} \in S$, we have $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{2} \in S$ for all $t \in[0,1]$.
