ECO 6122: Microeconomic Theory IV

Economics Department University of Ottawa final exam

Time allotted: 3 hours Professor: Louis Hotte

NB This questionnaire has 3 pages.

1. (20 points) Consumer preference relations

Let vector \vec{x} denote a consumption bundle, with $\vec{x} \in X = \Re^n_+$. Let \succeq denote the binary preference relations between any two bundles such that $\vec{x}^1 \succeq \vec{x}^2$ implies that bundle 1 is at least as good as bundle 2.

a) Which property of the preference relations implies a diminishing marginal rate of substitution (MRS) between two goods? Explain with the help of a graph. Make sure to explain properly what diminishing MRS means.

2. (40 points) Consumer theory

Suppose that a consumer's welfare depends on the quantities of agricultural goods x_1 and manufactured goods x_2 that she consumes. Suppose more precisely that her utility level can be represented by the following utility function:

$$u(x_1, x_2) = (x_1 - \alpha_1)^{1-\theta} (x_2 - \alpha_2)^{\theta},$$

where α_i are positive parameter values and $\theta \in (0, 1)$. The respective prices of the goods are p_1 and p_2 . The consumer's income is y.

- a) (5) Write down the consumer's problem.
- b) (10) Express the Langragian function for this problem and give the first-order conditions.
- c) (15) Derive the *indirect utility function*. (Explain briefly your steps. If you don't, I can't give much partial marks in case you make algebraic mistakes.)
- d) (5) Derive the (ordinary) demand functions.
- e) (5) If you were provided with the indirect utility function only, how would proceed to find this consumer's demand for manufactured goods?

3. (40 points) The Nash equilibrium in a soccer penalty kick¹

Consider the penalty kick in soccer. There are two players, the goalie and the striker. The striker has three strategies: kick to the goalie's right (R), to the goalie's left (L) or to the center (C). The goalie has three strategies: move left (L), move right (R) or stay in the center (C). Let α be the probability that the kick is stopped when both choose L and let β be the probability that the kick is stopped when both choose R. Assume that $0 < \alpha < \beta < 1$. Consequently, the striker is more skilled at kicking to the goalie's left. If both choose C, the goalie stops the ball with certainty. The payoff matrix is as follows.

		Striker	
	${ m L}$	\mathbf{C}	\mathbf{R}
I	α , $1-\alpha$	0, 1	0, 1
Goalie (0, 1	1, 0	0, 1
F	0, 1	0, 1	β , $1-\beta$

Figure 1: The penalty kick in soccer

- a) (5) Is there a pure strategy Nash equilibrium for this game? Justify briefly.
- b) (20) Let q_L, q_C, q_R be the probabilities that the striker plays L, C, R respectively. Let p_L, p_C, p_R be the probabilities that the goalie plays L, C, R respectively. Find a mixed-strategy Nash equilibrium (MSNE) for which both players will play each of the three strategies with strictly positive probability. Briefly explain your steps.
- c) (10) In the MSNE that you have found above, which of the three strategies will be played with lowest probability by the goalie? Interpret briefly why.
- d) (5) Let $\alpha = 0.4$ and $\beta = 0.6$. Calculate the probability that the striker will score a goal under the MSNE that you found. Briefly explain your procedure.

¹This is a modified version of problem 7.13 in Jehle and Reny (2011).

4. (40 points) Uncertainty and the VNM utility function²

Consider the quadratic VNM utility function $U(w) = a + bw + cw^2$.

- a) (10) What restrictions if any must be placed on parameters a, b, and c for this function to display risk aversion?
- b) (10) Over what domain of wealth can a quadratic VNM utility function be defined?
- c) (20) Given the gamble

$$g = ((1/2) \circ (w+h), (1/2) \circ (w-h)),$$

show that CE < E(g) and that P > 0.

²Problem 2.25 in Jehle and Reny (2011).