ECO 6122: Microeconomic Theory IV final exam
Economics Department
Time allotted: 3 hours
University of Ottawa
Professor: Louis Hotte

NB This questionnaire has 3 pages. Some formulae are provided in the APPENDIX (that you may or may not need).

1. (25 points) Existence of a VNM Utility Function on G

THEOREM: Let preferences \succcurlyeq over gambles in G satisfy axioms G1 to G6 (see Appendix). Then there exists a utility function $u: G \rightarrow \Re$ representing \succcurlyeq on G, such that u has the expected utility property.

Demonstrate the first part only of this theorem, i.e., demonstrate that "there exists a utility function $u: G \rightarrow \Re$ representing \succcurlyeq on $G \prime$. (You need NOT show that u has the expected utility property.)

2. (25 points) Cost functions

a) (5) Give the definition of a cost function in both words and formally.
b) (20) A real-valued function is called superadditive if $f(z 1+z 2) \geq f(z 1)+f(z 2)$. Show that every cost function is superadditive in input prices. Use this to prove that the cost function is non-decreasing in input prices without requiring it to be differentiable.

3. (25 points) Nash equilibrium and price competition

Firm A and firm B are two textile companies that produce the same silk cloth. Firm A has a technology that uses only labor (L) as an input. Its production function is

$$
Q_{A}=L .
$$

Firm B has a technology that uses both capital (K) and labor (L). Its production function is

$$
Q_{B}(K, L)=2 \sqrt{K L}
$$

. Let r and w represent the capital rental rate and the wage rate, and assume that both companies are price-takers in the input markets.

Suppose that the market demand for silk cloth is given by

$$
Q=120-P
$$

where P is the prevailing market price of cloth.
Both firms are profit maximizers. The two firms set the prices of their cloth $\left(P_{A}\right.$ and $\left.P_{B}\right)$ simultaneously, where P_{A} and P_{B} can take any integer value between 0 and 120 (no fractional prices are permitted). If $P_{A} \neq P_{B}$, consumers buy only from the lower-price firm; if $P_{A}=P_{B}$ they divide their purchases equally between the two firms.

Find Nash equilibrium prices when $w=10$ and $r=40$. Explain briefly but clearly all the steps in your work.

4. (25 points) Consumer choice

Lu consumes only one good: rice. Let x be the amount of rice he consumes, p the price of rice, and w his wealth. His utility function is given by

$$
u(x)=20 x-x^{2}, \forall x \geq 0
$$

1. Illustrate the graph of his utility function.
2. Describe the indifference curve for $u=64$. Is his utility function quasiconcave? Explain.
3. Assume that Lu must consume whatever he buys [no free disposal]. Find demand for $p, w \geq 0$. Explain your reasoning.
4. Find Lu's indirect utility function $v(p, w)$.

APPENDIX: Some axioms, definitions and properties

$$
\begin{aligned}
& \frac{\partial x_{i}}{\partial p_{j}}=\frac{\partial x_{i}^{h}}{\partial p_{j}}-x_{j} \frac{\partial x_{i}}{\partial y} \\
& x_{i}=-\frac{\partial v / \partial p_{i}}{\partial v / \partial y} \\
& p_{i}(\mathbf{x})=\frac{\partial u / \partial x_{i}}{\sum_{j=1}^{n} x_{j}\left(\partial u / \partial x_{j}\right)}
\end{aligned}
$$

Axioms of consumer choice:

1. Completeness. Either $\mathbf{x}^{1} \succsim \mathbf{x}^{2}$ or $\mathbf{x}^{2} \succsim \mathbf{x}^{1}$.
2. Transitivity. If $\mathbf{x}^{1} \succsim \mathbf{x}^{2}$ and $\mathbf{x}^{2} \succsim \mathbf{x}^{3}$, then $\mathbf{x}^{1} \succsim \mathbf{x}^{3}$.
3. Continuity. $\forall \mathbf{x}$ the sets $\succsim(\mathbf{x})$ and $\precsim(\mathbf{x})$ are closed.
4. Strict monotonicity. $\forall \mathrm{x}^{0}, \mathrm{x}^{1}$, if $\mathrm{x}^{0} \geq \mathrm{x}^{1}$ then $\mathrm{x}^{0} \succsim \mathrm{x}^{1}$, while if $\mathrm{x}^{0} \gg \mathrm{x}^{1}$ then $\mathrm{x}^{0} \succ \mathrm{x}^{1}$.
5. Convexity. If $\mathbf{x}^{0} \succsim \mathbf{x}^{1}$, then $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{0} \succsim \mathbf{x}^{0}, \forall t \in[0,1]$.
6. Strict convexity. If $\mathbf{x}^{1} \neq \mathbf{x}^{0}$ and $\mathbf{x}^{1} \succsim \mathbf{x}^{0}$, then $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{0} \succsim \mathbf{x}^{0}, \forall t \in(0,1)$.

Axioms of choice under uncertainty:

1. Completeness. Either $g \succsim g^{\prime}$ or $g^{\prime} \succsim g$.
2. Transitivity. If $g \succsim g^{\prime}$ and $g^{\prime} \succsim g^{\prime \prime}$, then $g \succsim g^{\prime \prime}$.
3. Continuity. $\exists \alpha \in[0,1]$ s.t. $g \sim\left(\alpha \oplus a_{1},\left(1-\alpha \oplus a_{n}\right)\right)$.
4. Monotonicity. $\forall \alpha, \beta \in[0,1],\left(\alpha \oplus a_{1},\left(1-\alpha \oplus a_{n}\right)\right) \succsim\left(\beta \oplus a_{1},\left(1-\beta \oplus a_{n}\right)\right)$ iff $\alpha \geq \beta$.
5. Substitution. If $g=\left(p_{1} \oplus g_{1}, \ldots, p_{k} \oplus g_{k}\right)$ and $h=\left(p_{1} \oplus h_{1}, \ldots, p_{k} \oplus h_{k}\right)$ and $h_{i} \sim g_{i}, \forall i$, then $h \sim h$.
6. Reduction to simple gambles.

Arrow-Pratt measure of risk-aversion:

$$
R_{a}(w) \equiv \frac{-u^{\prime \prime}(w)}{u^{\prime}(w)} .
$$

Some definitions:

1. Quasiconcave function. $f: D \rightarrow R$ is quasiconcave iff, for all \mathbf{x}^{1} and \mathbf{x}^{2} in $D, f\left(\mathbf{x}^{t}\right) \geq \min \left[f\left(\mathbf{x}^{1}\right), f\left(\mathbf{x}^{2}\right)\right]$ for all $t \in[0,1]$.
2. Concave function. $f: D \rightarrow R$ is a concave function if for all \mathbf{x}^{1} and \mathbf{x}^{2} in $D, f\left(\mathbf{x}^{t}\right) \geq t f\left(\mathbf{x}^{1}\right)+(1-$ $t) f\left(\mathbf{x}^{2}\right)$ for all $t \in[0,1]$.
3. Convex set. $S \in \Re^{n}$ is a convex set if for all $\mathbf{x}^{1} \in S$ and $\mathbf{x}^{2} \in S$, we have $t \mathbf{x}^{1}+(1-t) \mathbf{x}^{2} \in S$ for all $t \in[0,1]$.
