MAT1722 - Solutions des
problèmes Suggérés - Notion du travail

1. Supposons que le seau est à une hauteur
 \(h \) \((0 \leq h \leq 30)\) du sol et qu'on veut
 le soulever à partir de cette hauteur d'une
 très petite distance \(dh \). Le travail
 nécessaire est
 \[
 dT = F \cdot dh
 \]
 Ici la force \(F \) est égale
to la somme du poids du seau et
la poussée de la corde entre le travailleur
et le seau :
 \[
 F = 500 + 5(75-h)
 \]
 \[
 = (875 - 5h) \text{ lb}
 \]

 \[
 dT = (875 - 5h) dh
 \]

 Si on subdivise la distance de 30 pi en \(n \) sous-intervaux égaux
de longueur \(dh \) chacun, on obtient une approximation du
travail avec une somme de Riemann:
 \[
 T \approx \sum_{i=1}^{n} (875 - 5h_i) dh
 \]
 lorsque \(n \to +\infty \)
 \[
 T = \int_{0}^{30} (875 - 5h) \, dh = \left[875h - \frac{5}{2} h^2 \right]_{0}^{30} =
 \]

2. Comme dans l'exercice 10, le travail en question peut être
 exprimé par l'intégrale définie :
 \[
 T = \int_{0}^{10} \left[1000 + 4(30-h) \right] \, dh = \int_{0}^{10} (1120 - 4h) \, dh =
 \]
Le travail nécessaire pour pomper une tronche horizontale d'eau située à une profondeur \(h \) et ayant une épaisseur \(\Delta h \) est:

\[dT = (\text{poinds de la tronche}) \times h \]

\[= \text{Volume de la tronche} \times \text{densité} \times h \]

\[= 20 \times 10 \times \Delta h \times 62.4 \times h = 12480 \times h \Delta h \]

Le travail total est alors:

\[T = \int_0^{15} 12480 h \Delta h = \left[12480 \frac{h^2}{2} \right]_0^{15} \]

\[= 6240 \left[h^2 \right]_0^{15} = 1404000 \text{ ib-qi} \]

Prenons une tronche horizontale à une distance \(h \) de la boîte et d'épaisseur \(\Delta h \), le travail nécessaire pour pomper cette tronche est:

\[dT = (\Sigma 6^2 \Delta h \times 62.4 \times (20-h)) \]

Si on prend \(n \) tronches dans le cylindre, on obtient une approximation du travail total par une somme de Riemann:

\[T = \sum_{i=1}^{n} \int (36) \times (62.4) \times (20-h_i) \Delta h \]
\(n \to +\infty \), cette somme devient une intégrale définie dont
la valeur est le travail nécessaire pour vider le cylindre:

\[
T = \int_0^{10} \pi (36) (6.4) (20 - h) \, dh = 36 \pi (6.4) \left[20h - \frac{h^2}{2} \right]_0^{10}
\]

\[
= 36 \pi (6.4) (200 - 50) = 105859.1 \text{ lb \cdot pi}
\]

Prêtons une tranche horizontale du
mojout à une distance \(h \) du fond et d'épaisseur \(dh \). Le travail nécessaire
pour pomper cette tranche est

\[
dT = \pi r^2 \, dh \cdot (50) \cdot (25 - h) \text{ de travail}
\]

6. Prêtons une tranche horizontale du pétil à
une distance \(h \) de l'extrémité supérieure du
Cylindre et d'épaisseur Δh. Le volume d'une telle tronche est $12S\Delta h$ et son poids est $12S\Delta h \cdot 42$. Exprenons maintenant S en fonction de h:

$$16 = \left(\frac{S}{2}\right)^2 + (4-h)^2 = \frac{S^2}{4} = 16 - (4-h)^2$$

$$\Rightarrow S = 4\sqrt{h^2 + 8h}$$

Le travail pour pomper cette tronche est

$$dT = 12 \left(2\sqrt{h^2 + 8h}\right) \Delta h \cdot 42 \left(h+lo\right) \approx 1008(h+10)\sqrt{-h^2 + 8h} \Delta h$$

Le travail total alors est

$$T = \int_{0}^{1008(h+10)\sqrt{-h^2 + 8h} \Delta h} dh = 354673.24$$

1b - pi

Prions une tronche de vin à une distance h de l'extrémité supérieure de verre et d'épaisseur Δh. Le travail nécessaire pour pomper cette tronche est

$$dT = \pi r^2 \Delta h \cdot 980 \left(h+5\right)$$

Exprenons r en fonction de h:

$$\frac{5}{r} = \frac{10-h}{10}$$

$$\Rightarrow r = \frac{10-h}{2} = 5 - \frac{h}{2}$$
Le travail total pour vider le verre est:

\[T = \int_{10}^{1} (5 - \frac{h}{2}) (1.2) 9800 (h+5) \, dh = 1418693 \text{ ergs} \]

Prenez une tranche horizontale à une distance \(h \) du bord du réservoir et de poids \(dh \).
Le travail nécessaire pour pomper cette tranche est

\[\int_{0}^{4} r^2 \, dh \, (1000) (4.8) (6-h) \].

Il faut exprimer \(r \) en fonction de \(h \):
\[4^2 = (4-h)^2 + r^2 \quad \Rightarrow \quad r^2 = 16 - (4-h)^2 = -h^2 + 8h \]

Le travail total est alors

\[\int_{0}^{4} \frac{11}{2} (-h^2 + 8h) \times 9800 (6-h) \, dh = 9800 \frac{11}{2} \int_{0}^{4} (h^3 - 14h^2 + 48h) \, dh \]

\[= 9800 \frac{11}{2} \left[\frac{h^4}{4} - \frac{14}{3} h^3 + 24h^2 \right]_{0}^{4} \approx 4597616.13 \text{ ergs} \]