Question 1  1) \( y' = -\frac{2}{x} + x \) \hspace{1cm} y(1) = \frac{4}{3}

\[ y' + \frac{1}{x} y = x : \text{équation linéaire du premier ordre avec} \]
\[ f(x) = \frac{1}{x} \text{ et } r(x) = x. \] La solution générale est alors
\[ y(x) = \frac{\int f(x) \, dx}{\int f(x) \, dx} \cdot \int e^{-\frac{\int f(x) \, dx}{\int f(x) \, dx}} r(x) \, dx + C = \frac{\int x \, dx}{\int x \, dx} \cdot \frac{\int e^{\int x \, dx} x \, dx + C}{\int e^{\int x \, dx} x \, dx + C} = \frac{\int x^2 \, dx + C}{x} = \frac{1}{3} x^3 + \frac{C}{x}. \]

Montrez \( y(1) = \frac{4}{3} \Rightarrow \frac{1}{3} + C = \frac{4}{3} \Rightarrow C = 1. \) La solution du PVI est alors \( y(x) = \frac{1}{3} x^3 + \frac{1}{x}. \)

Vérification \( y(x) = \frac{1}{3} x^3 + \frac{1}{x} \Rightarrow y' = \frac{2}{3} x - \frac{1}{x^2}. \)

\[ y' + \frac{1}{x} y = \frac{2}{3} x - \frac{1}{x^2} + \frac{1}{x} \left[ \frac{1}{3} x^3 + \frac{1}{x} \right] = \frac{2}{3} x - \frac{1}{x^2} + \frac{1}{3} x + \frac{1}{x^2} = x. \]

De plus, \( y(x) = \frac{1}{3} x^3 + \frac{1}{x} \Rightarrow y(1) = \frac{1}{3} + 1 = \frac{4}{3}. \)

2) \( y' + 3y = e^{2x}, \) \( y(0) = 0 \)

Équation linéaire du premier ordre avec \( f(x) = -3, \) \( r(x) = e^{2x}. \)

La solution générale est alors
\[ y(x) = \frac{\int f(x) \, dx}{\int f(x) \, dx} \cdot \int e^{-\frac{\int f(x) \, dx}{\int f(x) \, dx}} r(x) \, dx + C = \frac{\int -3 \, dx}{\int -3 \, dx} \cdot \frac{\int e^{\int -3 \, dx} e^{2x} \, dx + C}{\int e^{\int -3 \, dx} e^{2x} \, dx + C} = \frac{\int -3x \, dx + C}{e^{-3x}} = e^{3x} \left( -e^{-x} + C \right) = -e^{-x} + Ce^{3x}. \]

\( y(0) = 0 \Rightarrow -1 + C = 0 \Rightarrow C = 1 \) et la solution du PVI est alors
\( y(x) = -e^{-x} + e^{3x}. \)

Vérification \( y(x) = -e^{-x} + e^{3x} \Rightarrow y'(x) = 2e^{-x} + 3e^{3x}. \) D'où
\[ y^3 - 3y = -2e^{2x} + 3e^{-3x} - 3\left(\frac{2x}{e^x} + e^{3x}\right) = e^{2x} \]

De plus, \( y(0) = \frac{1}{e^x} + e^{3x} \Rightarrow y(0) = 0 \)

3) \( y' + \frac{2}{x} y = \frac{x}{y}, \quad y(1) = 2 \)

Obtenir équation de Bernoulli avec \( f(x) = \frac{2}{x}, \ a = -1 \).

Posons \( u = \frac{y^{-a}}{y} = y^2 \Rightarrow u' = 2y y' = 2y(-\frac{2}{x} y + \frac{x}{y}) \Rightarrow \)

\[ u' = -\frac{4}{x} y^2 + 2x \Rightarrow u' + \frac{4}{x} u = 2x \]

Équation différentielle linéaire du premier ordre en \( u \). La solution générale est alors

\[ u(x) = \frac{\int e^{\frac{4}{x} dx} \cdot 2x dx + C}{\int e^{\frac{4}{x} dx}} = \frac{\int e^{4\ln x} \cdot x dx + C}{\int e^{4\ln x}} = \frac{\int x^4 dx + C}{x^4} \]

\[ = \frac{\frac{2}{5} x^5 + C}{x^4} = \frac{1}{3} x^2 + C \cdot \frac{1}{x^4} \]

\[ y(1) = 2 \Rightarrow u(1) = 2^2 = 4 \Rightarrow \frac{y}{x^2} + C = \frac{4}{3} \Leftrightarrow C = \frac{4}{3} \]

La solution du PVI est alors

\[ y = \sqrt{u} = \sqrt{\frac{1}{3} x^2 + \frac{4}{3} x^{-4}} \] (comme \( y(0) > 0 \))

 vérification

\[ y' = \frac{1}{2} \left( \frac{\frac{2}{3} x - \frac{4}{3} x^{-5}}{\left(\frac{1}{3} x^2 + \frac{4}{3} x^{-4}\right)^{\frac{1}{2}}} \right)^{\frac{1}{2}} \Rightarrow \]

\[ y' + \frac{2}{x} y = \left(\frac{1}{3} x^2 + \frac{4}{3} x^{-4}\right)^{\frac{1}{2}} \left(\frac{1}{3} x^2 + \frac{4}{3} x^{-4}\right)^{-\frac{1}{2}} \]

\[ \left(\frac{1}{3} x^2 + \frac{4}{3} x^{-4}\right)^{-\frac{1}{2}} \left[ \frac{1}{3} x - \frac{22}{3} x^{-5} + \frac{2}{x} \left(\frac{1}{3} x^2 + \frac{4}{3} x^{-4}\right)^{\frac{1}{2}} \right] = \]

\[ \left(\frac{1}{3} x - \frac{22}{3} x^{-5} + \frac{2}{x} \left(\frac{1}{3} x^2 + \frac{4}{3} x^{-4}\right)^{\frac{1}{2}} \right) = \frac{2}{y} \]

De plus, \( y(x) = \sqrt{\frac{1}{3} x^2 + \frac{4}{3} x^{-4}} \Rightarrow y(1) = \sqrt{\frac{1}{3} + \frac{4}{3}} = \sqrt{\frac{16}{3}} \approx 2 \)

4) \( y' - \frac{2}{x} y = -x^2 y^2, \quad y(1) = 1 \)

Obtenir équation de Bernoulli avec \( f(x) = -\frac{2}{x} \) et \( a = 2 \).
Posons \( u = y^{-a} = y^{-1} \) \( \Rightarrow \) \( u' = -y^{-2} y' = -y^2 \left( \frac{2}{x} y - x^2 y' \right) \Rightarrow \)

\[ u' = -\frac{2}{x} y^{-1} - x^2 \Rightarrow u' + \frac{2}{x} u = x^2 \ (\text{car} \ y^{-1} = u) ; \text{Chute équation du premier ordre. La solution générale est alors} \]

\[ U(x) = \int e^{\int f(x) \, dx} \cdot c(x) + Ce^{\int \frac{2}{x} \, dx} = \int e^{\int f(x) \, dx} \cdot L \, dx + C = \frac{1}{2 \ln x} \int e^{\int f(x) \, dx} \cdot T \, dx + C \]

\[ = \int \frac{x^4 \, dx + C}{x^2} = \frac{5}{3} \frac{x^5 + C}{x^2} = \frac{1}{3} x^3 C x^{-2}. \text{Comme} \ y(1) = 1 \Rightarrow \]

\[ u(1) = \frac{1}{1} = 1 \Rightarrow u = \frac{1}{3} \left( \frac{1}{x} \right)^{\frac{1}{2}} \Rightarrow C = \frac{y}{x} \quad \text{et alors} \]

\[ U(x) = \frac{1}{3} x + \frac{y}{3} x^{-2} = \frac{x}{3} + \frac{y}{5} x^2 = \frac{x^5 + 4}{5 x^2}. \text{Finalement,} \]

\[ y(x) = \frac{1}{u(x)} = \frac{5 x^2}{x^5 + 4} \text{ est la solution du PVI.} \]

**Vérification** \( y' = \frac{10 x \left( x^5 + 4 \right) - 25 x^6}{(x^5 + 4)^2} = \frac{10 x^6 + 40 x - 25 x^6}{(x^5 + 4)^2} \)

\[-15 x^6 + 40 x \]

\[ \frac{(x^5 + 4)^2}{(x^5 + 4)^2} \text{. Alors} \ y' - \frac{2 y}{x} = -15 x^6 + 40 x - \frac{25 x^2}{x(x^5 + 4)} \]

\[-15 x^6 + 40 x - 10 x \left( x^5 + 4 \right) \]

\[ \frac{(x^5 + 4)^2}{(x^5 + 4)^2} = -15 x^6 + 40 x - 10 x^6 - 40 x \]

\[-15 x^6 + 40 x \]

\[-15 x^6 + 40 x \]

\[ -15 x^6 + 40 x - 10 x \left( x^5 + 4 \right) \]

\[ \frac{(x^5 + 4)^2}{(x^5 + 4)^2} = -\frac{25 x^6}{(x^5 + 4)^2} = -x^2 \left( \frac{5 x^2}{x^5 + 4} \right)^2 = -x^2 \frac{y^2}{y} \]

De plus, \( y(x) = \frac{5 x^2}{x^5 + 4} \Rightarrow y(0) = \frac{5}{1^5} = 1. \)
Question 2

(1) \( \frac{dy}{dx} = F(ax + by) \); \( a, b \in \mathbb{R} \).

Posons \( u = ax + by \), donc \( \frac{du}{dx} = a + b \frac{dy}{dx} = a + b F(ax + by) \).

On obtient alors la nouvelle E.D.:

\( \frac{du}{dx} = a + b F(u) \) qui vécrit comme \( \frac{du}{a + b F(u)} = dx \); équation différentielle résoluble en \( u \) et \( x \).

(2) \( \frac{dy}{dx} = \sin^2(x + 2y) - 1 = F(ax + by) \) où \( F(u) = \sin^2 u - 1 \)

et \( u = ax + by \) avec \( a = b = 1 \). D'après la première phrase, on doit avoir \( \frac{du}{1 + \sin^2 u - 1} = dx \) \( \Rightarrow \int \frac{du}{\sin^2 u} = \int dx \) \( \Rightarrow \)

\(-\cot g(u) = x + C \Rightarrow \cot g(x + 2y) = -x + C \) solution générale sous forme implicite.

Question 3

(1) \( y' = 2y^\frac{4}{5} \), \( y(0) = 0 \).

\( f(x, y) = 2y^{\frac{4}{5}} \) et \( \frac{df}{dy} = 2(\frac{4}{5})y^{-\frac{1}{5}} = \frac{8}{5}y^{-\frac{1}{5}} \) \( \Rightarrow \) \( f \) est positif continue au point \((0, 0)\).

\( \frac{dy}{dx} = 2y^{\frac{4}{5}} \Rightarrow y^{-\frac{4}{5}} dy = 2dx \) résoluble

\( \int y^{-\frac{4}{5}} dy = \int 2dx \Rightarrow \frac{y^{-\frac{4}{5} + 1}}{-\frac{4}{5} + 1} = 2x + C \Rightarrow \frac{y^{\frac{1}{5}}}{\frac{1}{5}} = \frac{2}{5}x + C \)

\( y(0) = 0 \Rightarrow C = 0 \) et alors \( y = \left(\frac{2}{5}\right)^5 x^5 \) est une solution du P.V.I.
Notez d'abord que la fonction constante $y = 0$ est de même une solution du PV.

2) $y' = x y^2$ ; $y(0) = 2$. Ici $x_0 = 0$, $y_0 = 2$ et $f(x, y) = x y^2$

d'itération de Picard est donnée par

$$y_{n+1}(x) = y_0 + \int_{x_0}^{x} f(t, y_n(t)) \, dt = 2 + \int_{0}^{x} t y_n^2(t) \, dt$$

$y_0(x) = 2$ (fonction constante)

$y_1(x) = 2 + \int_{0}^{x} t y_0^2(t) \, dt = 2 + \int_{0}^{x} t \, dt = 2 + \left[ \frac{t^2}{2} \right]_{0}^{x} = 2 + 2 x^2$

$y_2(x) = y_0(x) + \int_{0}^{x} t y_1^2(t) \, dt = 2 + \int_{0}^{x} t \left(2 + 2 t^2\right)^2 \, dt$

$= 2 + 4 \int_{0}^{x} t \left(1 + t^2 \right)^2 \, dt = 2 + 4 \int_{0}^{x} t \left(1 + t^2 + 2 t^4 + t^6 \right) \, dt$

$y_n(x) = 2 + 4 \int_{0}^{x} t \left(1 + t^2 + t^4 + t^6 \right) \, dt = 2 + 4 \left[ \frac{t^2}{2} + \frac{t^4}{2} + \frac{t^6}{6} \right]_{0}^{x}$

$= 2 + 2 x^2 + 2 x^4 + \frac{2}{3} x^6$

Donc $y_0(x) = 2$

$y_1(x) = 2 + 2 x^2$

$y_2(x) = 2 + 2 x^2 + 2 x^4 + \frac{2}{3} x^6$. 