MAT 2384-Practice Problems on Numerical Methods for Differential Equations

Question 1. For each of the Following IVP’s, apply Euler Method with the given step size \(h \) to estimate solutions on the given interval. Round your answers to 6 decimal places. Then Solve the IVP exactly and compare your estimations with the Exact values.

1. \(y' + 5x^4y^2 = 0, \ y(0) = 1, \ h = 0.1 \) on [0, 0.5]

2. \(y' = \frac{1}{2}\pi \sqrt{1 - y^2}, \ y(0) = 0, \ h = 0.1 \) on [0, 0.3]

3. \(y' = (y + x)^2, \ y(0) = 0, \ h = 0.1 \) on [0, 0.4]

Question 2. For each of the Following IVP’s, apply the Improved Euler Method with the given step size \(h \) to estimate solutions on the given interval. Round your answers to 6 decimal places. Then Solve the IVP exactly and compare your estimations with the Exact values.

1. \(y' = y - y^2 = 0, \ y(0) = 0.5, \ h = 0.1 \) on [0, 0.3]

2. \(y' + 2xy^2 = 0, \ y(0) = 1, \ h = 0.2 \) on [0, 0.6]

3. \(y' = 2(y^2 + 1), \ y(0) = 0, \ h = 0.05 \) on [0, 0.2]

Question 3. Consider the IVP:

\[y' = 2x^{-1}\sqrt{y - \ln x} + x^{-1}, \ y(1) = 0. \]

(1) Verify that the Exact solution is \(y = (\ln x)^2 + \ln x \)

(2) Use the Improved Euler Method to estimate solutions of the IVP on the interval \(1 \leq x \leq 1.6 \) using a step size of \(h = 0.2 \). Round your answers to 6 decimal places

(3) Use the Runge-Kutta method of order 4 to estimate solutions of the IVP on the interval \(1 \leq x \leq 1.6 \) using a step size of \(h = 0.2 \). Round your answers to 6 decimal places
(4) Make a table to compare your estimates in parts (2) and (3) with the exact values (from part (1)).

Question 4. Use the **Runge-Kutta method of order 4** to estimate solutions of the IVP

\[y' = xy + \cos x, \quad y(0) = 0 \]

on the interval \(0 \leq x \leq 0.6 \) using a step size of \(h = 0.2 \).