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Abstract. Let k be a field. We study infinite strictly descending sequences A0 ⊃
A1 ⊃ · · · of rings where each Ai is a polynomial ring in two variables over k, the aim

being to describe those sequences satisfying
⋂∞

i=0 Ai 6= k. We give a complete answer

in characteristic zero, and partial results in arbitrary characteristic. We apply those

results to the study of dominant morphisms A2 → An and their factorizations, where

n ∈ {1, 2} and An is the affine n-space over k.

1. Introduction

Throughout, k is an arbitrary field unless otherwise specified.
Let An denote the affine n-space over k, i.e., An = SpecA where A is a polynomial

ring in n variables over k. One of the aims of this paper is to study dominant morphisms
A2 → An (where n ∈ {1, 2}), and factorizations of such morphisms.

Section 2 is preparatory, Sections 3–5 constitute the algebraic core of the article, and
Section 6 applies the theory of Sections 3–5 to factorizations of dominant morphisms
A2 → An, n ∈ {1, 2}.

More precisely, Sections 3 and 4 study strictly descending infinite sequences (Ai)
∞
i=0

where each Ai is a polynomial ring in two variables over k (by strictly descending we
mean that A0 ⊃ A1 ⊃ A2 ⊃ · · · , where “⊃” denotes strict inclusion). Any such
sequence satisfies k ⊆

⋂∞
i=0Ai, and the aim of Sections 3 and 4 is to describe the

sequences satisfying
⋂∞
i=0 Ai 6= k. Section 3 is devoted to the proof of Thm 3.3, which

settles the special case where (Ai)
∞
i=0 is “birational” (we say that (Ai)

∞
i=0 is birational

if all Ai have the same field of fractions). Section 4 deals with the general case. Note
that the proof of Thm 3.3 makes essential use of one of the main results of [CND14].
The following fact (Thm 1.1) is a consequence of the results of Sections 3 and 4 and
is a good illustration of the type of result contained in those two sections. Recall that
if A is a polynomial ring in two variables over k then by a variable of A we mean an
element F ∈ A for which there exists G satisfying A = k[F,G].

1.1. Theorem. Let k be a field and (Ai)
∞
i=0 a strictly descending infinite sequence

where each Ai is a polynomial ring in two variables over k and
⋂∞
i=0Ai 6= k. Then
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2 PIERRETTE CASSOU-NOGUÈS AND DANIEL DAIGLE⋂∞
i=0Ai = k[F ] for some F transcendental over k. Moreover, if we assume that at least

one of the following conditions is satisfied:

(i) all Ai have the same field of fractions,
(ii) char k = 0,

then F is a variable of Ai for i� 0.

Indeed, Prop. 4.5 implies that
⋂∞
i=0 Ai = k[F ] for some F , and if (i) (resp. (ii)) is

true then Thm 3.3 (resp. Thm 4.15) implies that F is a variable of Ai for i � 0. So
Thm 1.1 follows from Prop. 4.5 and Thms 3.3 and 4.15.

Remark. We don’t know if the last assertion of Thm 1.1 continues to be valid when
both (i) and (ii) are false; note, however, the partial results Prop. 4.5 and Prop. 4.14.

Section 5 studies chain conditions in sets of polynomial rings. More precisely, let k
be any field, and let us write “A = k[2]” as an abbreviation of “A is a polynomial ring
in two variables over k”. Given rings A ⊆ B such that A = k[2] and B = k[2], consider
the set R(A,B) =

{
R | A ⊆ R ⊆ B and R = k[2]

}
. Then Thm 5.6 states that the

poset (R(A,B),⊆) satisfies ACC and DCC.
Let us say that an element F of R = k[2] is univariate in R if there exists (X, Y ) ∈

R × R such that R = k[X, Y ] and F ∈ k[X]. Given a pair (A,F ) such that A = k[2]

and F ∈ A \ k, define

U(A,F ) =
{
R | R = k[2], F ∈ R ⊆ A and F is not univariate in R

}
U∗(A,F ) =

{
R ∈ U(A,F ) | FracR = FracA

}
.

Then Thms 5.11 and 5.12 state:

• (U(A,F ),⊆) satisfies ACC, and if char k = 0 then it also satisfies DCC.
• (U∗(A,F ),⊆) satisfies ACC and DCC.

We call the reader’s attention on the fact that Theorems 5.6, 5.11 and 5.12 answer very
natural questions about polynomial rings in two variables. Their proofs use much of the
material developed in Sections 3 and 4 and some results on birational endomorphisms
of the affine plane.

Section 6 applies the results of Sections 3–5 to answer some questions regarding
factorizations of dominant morphisms A2 → An, n ∈ {1, 2}. Let us introduce the
notations and definitions needed for discussing this.

Let k be a field and consider algebraic varieties and morphisms over k. Recall that
a morphism of varieties f : X → Y is dominant if f(X) is Zariski-dense in Y , and that
f is birational if there exist nonempty Zariski-open subsets U of X and V of Y such
that f restricts to an isomorphism U → V . Given varieties X, Y , we write Mor(X, Y )
for the set of morphisms X → Y . We consider the monoid Dom(X) of dominant
morphisms X → X (the operation being the composition of morphisms), the monoid
Bir(X) of birational morphisms X → X, and the group Aut(X) of automorphisms of
X. We have Aut(X) ⊆ Bir(X) ⊆ Dom(X).

The monoid Dom(A1) has been studied extensively. It is trivial to see—simply by
considering degrees of polynomials—that Dom(A1) is an “atomic” monoid (a monoid
M is atomic if every non invertible element of M is a finite composition of irreducible
elements of M ; see Def. 6.1). J.F. Ritt showed in 1922 that irreducible factorizations
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in Dom(A1) have certain uniqueness properties (cf. [Rit22]), and this gave rise to a
research area that is still active today, with generalizations and applications in several
fields. So the monoid Dom(A1), though much simpler than Dom(A2), is already an
interesting object.

The first part of Section 6 is concerned with the monoid structure of Dom(A2)
and in particular Cor. 6.2 states that Dom(A2) is atomic. This appears to be a new
result, as far as we can see; in fact it is surprising to see how little is known about
Dom(A2). The fact that Dom(A2) is atomic doesn’t seem to be provable by simple
minded considerations of degree, as in the case of Dom(A1). We obtain it as a trivial
consequence of the fact (Thm 5.6) that R(A,B) satisfies ACC and DCC.

The second part of Section 6 is concerned with lean factorizations, which we now
define. Given a morphism of varieties f : X → Y , consider all factorizations of f of
the following type:

(∗) X α
//

f=β◦f ′◦α

**X
f ′
// Y

β
// Y with α ∈ Bir(X), f ′ ∈ Mor(X, Y ), β ∈ Bir(Y ).

We say that f is a lean morphism if every factorization (∗) of f satisfies α ∈ Aut(X)
and β ∈ Aut(Y ). By a lean factorization of f , we mean a factorization (∗) of f in
which f ′ is lean.

The second part of Section 6 presents two results on lean factorizations, namely, we
show that every dominant morphism A2 → A2 admits a lean factorization (Thm 6.5),
and we determine which dominant morphisms A2 → A1 admit a lean factorization
(Thm 6.7). The insight provided by Thm 6.7 allows us, in [CND15b] and [CND15a],
to make some progress in the open problem of classifying rational polynomials (let
us say, briefly, that a rational polynomial is a dominant morphism A2 → A1 whose
general fibers are rational curves). The relation between lean factorizations and the
classification of rational polynomials is explained in Section 1 of [CND15a].

The second author would like to thank the faculty and staff at the Université de
Bordeaux I for their hospitality. The research leading to this paper was initiated when
the second author spent a month at that institution as a professeur invité.

2. Preliminaries

Conventions. The symbol k denotes an arbitrary field, unless otherwise specified.
All algebraic varieties (in particular all curves and surfaces) are irreducible and

reduced. Varieties and morphisms are over k.
All rings are commutative and have a unity. The symbol A∗ denotes the set of units

of a ring A. If A is a subring of a ring B and n ∈ N, the notation B = A[n] means that
B is isomorphic (as an A-algebra) to the polynomial ring in n variables over A. If L/K
is a field extension then “L = K(n)” means that L is purely transcendental over K,
of transcendence degree n; the transcendence degree of L over K is denoted trdegK L.
The field of fractions of an integral domain A is denoted FracA. If A ⊆ B are domains,
trdegA(B) is an abbreviation for trdegFracA(FracB). We adopt the conventions that
0 ∈ N, that “⊂” means strict inclusion and that “\” denotes set difference.

2.1. Variables and coordinate lines. Let k be a field.
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(i) Let A = k[2]. A variable of A is an element F ∈ A for which there exists G
satisfying k[F,G] = A.

(ii) Consider the affine plane over k, A2 = A2
k = SpecA (where A = k[2]). A curve

C ⊂ A2 is called a coordinate line of A2 if it is the zero-set of a variable of A.

Remark. It is clear that if C ⊂ A2 is a coordinate line of A2 then C ∼= A1, and the
Abhyankar-Moh-Suzuki Theorem ([AM75], [Suz74]) states that the converse is true if
char k = 0. If char k > 0, there exist curves C ⊂ A2 satisfying C ∼= A1 but which are
not coordinate lines (for a survey of this topic, see [Gan11]).

2.2. Birational morphisms. Let k be an algebraically closed field and A2 = A2
k

the affine plane over k. Refer to Section 2 of [CND14] for background on birational
endomorphisms of A2. Recall in particular that a contracting curve of a birational
morphism Φ : A2 → A2 is a curve C ⊂ A2 such that Φ(C) is a point, and that a missing
curve of Φ is a curve C ⊂ A2 such that im(Φ)∩C is a finite set of closed points of A2;
Φ has finitely many contracting curves and missing curves. We write Cont(Φ) (resp.
Miss(Φ)) for the set of contracting (resp. missing) curves of Φ, and c(Φ) = |Cont(Φ)|
and q(Φ) = |Miss(Φ)| for the cardinalities of these sets (c(Φ), q(Φ) ∈ N).

2.2.1. Notation. Consider morphisms A2 Φ−→ A2 f−→ A1 where Φ is birational and f is
dominant. Then we write

Misshor(Φ, f) =
{
C ∈ Miss(Φ) | f(C) is a dense subset of A1

}
.

We refer to the elements of Misshor(Φ, f) as the “f -horizontal” missing curves of Φ.

The following is used in the proof of Prop. 3.23:

2.2.2. Lemma. Consider morphisms A2 Φ−→ A2 f−→ A1 such that Φ is birational and f is
dominant, and let C ⊂ A2 be a contracting curve of Φ. Suppose that Misshor(Φ, f) = ∅
and that C = (f ◦Φ)−1(Q) for some Q ∈ A1. Then f−1(Q) is a coordinate line in A2.

Proof. Define Γ = f−1(Q) and observe that C = Φ−1(Γ).
Suppose that some irreducible component D of Γ is not a missing curve of Φ. Then

there exists a curve D′ ⊂ A2 such that Φ(D′) is a dense subset of D. Then Φ(D′) ⊆
D ⊆ Γ, so D′ ⊆ Φ−1(Γ) = C, so D′ = C and hence Φ(D′) = Φ(C) is a point, which is
absurd.

This shows that Γ is a union of missing curves of Φ. As each missing curve of Φ is
included in a fiber of f (because Misshor(Φ, f) = ∅), it follows that each missing curve
of Φ is either included in Γ or disjoint from Γ; so [CND14, 2.17] implies:

• #Γ = #Φ−1(Γ) = #C = 1 (where #M denotes the number of irreducible
components of a closed set M), so Γ is irreducible;

• Φ factors as A2 Ψ′−→ A2 Ψ−→ A2, where Ψ and Ψ′ are birational morphisms and
where the irreducible curve Γ is the unique missing curve of Ψ.

Since Miss(Ψ) = {Γ} for some birational endomorphism Ψ of A2, [CND14, 3.4] implies
that Γ is a coordinate line of A2. �
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2.3. Dicriticals. Let k be an algebraically closed field.1

Given a field extension L ⊆M , let V(M/L) be the set of valuation rings R satisfying
L ⊆ R ⊆M , FracR = M and R 6= M .

2.3.1. Definition. Consider a pair (F,A) such that A = k[2] and F ∈ A \ k.

(a) dic(F,A) = cardinality of the set
{
R ∈ V(FracA/k(F )) | A * R

}
.

(b) If f : SpecA→ Spec k[F ] is the dominant morphism determined by the inclu-
sion homomorphism k[F ]→ A, we define dic(f) = dic(F,A).

Note that (b) defines dic(f) for any dominant morphism f : A2 → A1. We refer
to dic(f) as the “number of dicriticals” of f ; this use of terminology is justified in
[CND15b, 2.3]. Note that dic(f) is a positive integer.

The following fact (needed for proving Prop. 3.23) is an immediate consequence of
[CND15b, 2.9]:

2.3.2. Corollary. Consider morphisms A2 Φ−→ A2 f−→ A1 where Φ is birational and f is
dominant. Then dic(f ◦ Φ) = dic(f) + |Misshor(Φ, f)|.

2.4. Field generators. Let k be a field.

2.4.1. Notation. Let us agree that the notation A � B means:

A = k[2], B = k[2], A ⊆ B and FracA = FracB.

2.4.2. Definition. Let F ∈ A = k[2].

(i) F is a field generator in A if FracA = k(F,G) for some G ∈ FracA.
(ii) F is a good field generator in A if FracA = k(F,G) for some G ∈ A.

(iii) F is a very good field generator in A if it is a good field generator in each A′

satisfying F ∈ A′ � A.

Refer to [CND15b] for details on these notions (see also [Rus77], [CN05]). “Good”
and “very good” field generators appear in L. 3.2, Thm 3.3 and Thm 6.7, below.

3. Infinite chains of inclusions: the birational case

Throughout this section, we fix a field extension K/k where k is an arbitrary field and
K is a purely transcendental extension of k of transcendence degree 2. We consider the
set A = A(K/k) whose elements are the rings A satisfying k ⊂ A ⊂ K, FracA = K
and A = k[2]. By an infinite descending chain in A, we mean an infinite sequence(
Ai
)
i∈N of elements Ai of A satisfying A0 ⊃ A1 ⊃ A2 ⊃ . . . , where “⊃” denotes strict

inclusion.
Note that k ⊆

⋂∞
i=0Ai holds for every infinite descending chain

(
Ai
)
i∈N in A. Our

aim is to describe the chains
(
Ai
)
i∈N satisfying

⋂∞
i=0Ai 6= k.

1It is shown in [CND15b] that all of paragraph 2.3 (including Cor. 2.3.2) remains valid for k an

arbitrary field.
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3.1. Definition. An infinite descending chain
(
Ai
)
i∈N in A is said to be simple if there

exist N ∈ N and X, Y ∈ AN satisfying AN = k[X, Y ] and:

for each i ≥ N , there exists ϕi(X) ∈ k[X] such that Ai = k[X,ϕi(X)Y ].

3.2. Lemma. Let
(
Ai
)
i∈N be an infinite descending chain in A. Suppose that

(
Ai
)
i∈N

is simple, with notations N,X, Y, ϕi as in Def. 3.1. Then the following hold.

(a) If N ≤ i < j then ϕi | ϕj in k[X] and degX ϕi < degX ϕj;
(b)

⋂∞
i=0Ai = k[X];

(c) X is a good field generator of A0.

Proof. We leave (a) and (b) to the reader. Assertion (c) follows from k[X, Y ] = AN ⊆
A0 ⊂ k(X, Y ). �

The main result of this section is:

3.3. Theorem. For an infinite descending chain
(
Ai
)
i∈N in A, the following are equiv-

alent:

(a)
⋂∞
i=0Ai 6= k;

(b)
⋂∞
i=0Ai = k[F ] for some good field generator F of A0;

(c)
(
Ai
)
i∈N is simple.

Before starting the proof of the Theorem, note the following:

3.4. Remark. Given A ∈ A and F ∈ A \ k, the following are equivalent:

(a) F is a good field generator of A;
(b) there exists an infinite descending chain

(
Ai
)
i∈N in A satisfying A0 = A and⋂∞

i=0Ai = k[F ].

Proof. If (a) holds then pick G ∈ A satisfying k(F,G) = FracA and define A0 = A and
An = k[F, F nG] for n ≥ 1; then (b) holds. The converse follows from Theorem 3.3. �

Let us observe right away that, in Thm 3.3, implications (c)⇒ (b)⇒ (a) are trivial
(the first one follows from L. 3.2). So the proof of Thm 3.3 reduces to proving that

(1)
⋂∞
i=0Ai 6= k =⇒

(
Ai
)
i∈N is simple

holds for every infinite descending chain
(
Ai
)
i∈N in A. Keep in mind that, from now-on,

whenever we speak of the proof of Thm 3.3 we are really speaking of that of (1).
We now begin the proof of Thm 3.3 (i.e., of (1)). We first reduce the proof to the

case where k is algebraically closed, and then prove that special case: Lemmas 3.13
and 3.24 constitute a proof of Theorem 3.3.

In paragraphs 3.5–3.13, k is any field.

3.5. Lemma. Consider k ⊂ A ⊆ B where A = k[2], B = k[2] and FracA = FracB.
Suppose that X, Y ∈ B are such that B = k[X, Y ] and X ∈ A. Then there exists
ϕ(X) ∈ k[X] \ {0} such that A = k[X,ϕ(X)Y ].
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Proof. This can be deduced from the much stronger result [Rus76, 1.3]. The present
lemma (and its proof) being much easier, we include a proof for the reader’s conve-
nience.

Since k[X] and A are UFDs, k[X] ⊂ A ⊆ k[X][1] and A has transcendence degree 1
over k[X], result [AEH72, 4.1] implies that A = k[X][1]. So A = k[X, v] for some v. The
conditions k(X)[v] ⊆ k(X)[Y ] and k(X, v) = k(X, Y ) imply that k(X)[v] = k(X)[Y ],
which implies that v = ϕ(X)Y + ψ(X) for some ϕ(X), ψ(X) ∈ k(X), ϕ(X) 6= 0. As
v is a polynomial in X, Y , we have in fact ϕ(X), ψ(X) ∈ k[X]. Then A = k[X, v] =
k[X,ϕ(X)Y + ψ(X)] = k[X,ϕ(X)Y ]. �

3.6. Definition. Suppose that k ⊂ A ⊆ B, where A = k[2], B = k[2] and FracA =
FracB. We say that the inclusion A ⊆ B is simple if there exist X, Y such that
B = k[X, Y ] and A = k[X,ϕ(X)Y ] for some ϕ(X) ∈ k[X].

3.7. Lemma. Consider k ⊂ A ⊆ B ⊂ C where A = k[2], B = k[2], C = k[2] and
Frac(A) = Frac(B) = Frac(C). Suppose that A ⊂ C and B ⊂ C are simple (in the
sense of Def. 3.6), and let X, Y ∈ C be such that:

C = k[X, Y ] and B = k[X,ϕ(X)Y ] for some ϕ(X) ∈ k[X].

Then A = k[X,ψ(X)Y ] for some ψ(X) ∈ k[X].

Proof. The assumption implies that there exist X ′, Y ′ ∈ C such that C = k[X ′, Y ′]
and A = k[X ′, ρ(X ′)Y ′] for some ρ(X ′) ∈ k[X ′]. The elements X, Y,X ′, Y ′ ∈ C,
ϕ(X) ∈ k[X] and ρ(X ′) ∈ k[X ′] are fixed from now-on. We claim:

(2) k[X] = k[X ′].

We first prove this under the assumption that k is algebraically closed. Consider the

birational morphisms SpecC
ΦC,B−−−→ SpecB

ΦB,A−−−→ SpecA determined by the inclusion
homomorphisms A ↪→ B ↪→ C. Also define ΦC,A = ΦB,A ◦ ΦC,B : SpecC → SpecA.
Note that degX ϕ(X) ≥ 1, because B 6= C (recall that “⊂” means strict inclusion).
Choose a root λ ∈ k of ϕ(X) and consider the curve Γ ⊂ SpecC defined by the prime
ideal p = (X − λ) of C. Then Γ ∈ Cont(ΦC,B). As Cont(ΦC,B) ⊆ Cont(ΦC,A), we
have Γ ∈ Cont(ΦC,A); since C = k[X ′, Y ′] and A = k[X ′, ρ(X ′)Y ′], it follows that Γ is
defined by the ideal (X ′ − µ) of C, for a suitable µ ∈ k. So (X − λ) = p = (X ′ − µ),
which implies that (2) holds (when k is algebraically closed).

Next, we prove the general case of (2) (i.e., k is any field). Let k̄ be the algebraic
closure of k and define Ā = k̄ ⊗k A, B̄ = k̄ ⊗k B and C̄ = k̄ ⊗k C. The elements
X, Y,X ′, Y ′ ∈ C, ϕ(X) ∈ k[X] and ρ(X ′) ∈ k[X ′] satisfy:

• C̄ = k̄[X, Y ] and B̄ = k̄[X,ϕ(X)Y ],
• C̄ = k̄[X ′, Y ′] and Ā = k̄[X ′, ρ(X ′)Y ′].

By the special case “k = k̄” of (2), we obtain k̄[X] = k̄[X ′]. Thus X is integral over
k[X ′] and X ′ is integral over k[X]. As X ∈ C = k[X ′][1] is integral over k[X ′], we have
X ∈ k[X ′]; as X ′ ∈ C = k[X][1] is integral over k[X], we have X ′ ∈ k[X]; so (2) is true
in general.

By (2) we have X ∈ k[X ′], so X ∈ A ⊆ C = k[X, Y ]; then L. 3.5 implies that
A = k[X,ψ(X)Y ] for some ψ(X) ∈ k[X]. �
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3.8. Lemma. For an infinite descending chain
(
Ai
)
i∈N in A, the following conditions

are equivalent:

(a)
(
Ai
)
i∈N is simple (in the sense of Def. 3.1);

(b) there exists N ∈ N such that, for each i ≥ N , Ai ⊆ AN is simple (in the sense
of Def. 3.6).

Proof. Suppose that (b) holds. Since AN+1 ⊂ AN is simple, there exist X, Y such that
AN = k[X, Y ] and AN+1 = k[X,ϕN+1(X)Y ] for some ϕN+1(X) ∈ k[X]. The pair
(X, Y ) being fixed, we claim:

(3) for each i ≥ N there exists ϕi(X) ∈ k[X] such that Ai = k[X,ϕi(X)Y ].

Indeed, this is clear if i = N,N + 1. If i ≥ N + 2 then applying L. 3.7 to Ai ⊂
AN+1 ⊂ AN shows that Ai = k[X,ϕi(X)Y ] for some ϕi(X) ∈ k[X]. So (3) is true and
consequently (a) holds. The converse is trivial. �

We use some ideas found in the proof of Case 1 of [Rus76, 1.3] to prove Prop. 3.12,
below.

3.9. Notation. Given R = k[2], let S(R) be the set of triples (x, y, f) satisfying:

(i) R = k[x, y] and f ∈ R \ k,
(ii) the degree form of f is a monomial in x, y, i.e., f = λxmyn+f ′ for some λ ∈ k∗,

m,n ∈ N and f ′ ∈ R such that deg(f ′) < m+ n,
(iii) degx(f) = m and degy(f) = n,

where the degrees are the ones determined by (x, y).

3.10. Lemma. If f ∈ R = k[2] is a field generator of R, then there exists (x, y) such
that (x, y, f) ∈ S(R).

Proof. If f is a variable of R then choose g such that R = k[f, g]; then (f, g, f) ∈ S(R).
If f is not a variable of R then—as explained in the proof of [Rus76, 1.3]—the desired
conclusion follows from [Rus75, 3.7 and 4.5]. �

3.11. Lemma. Let R = k[x, y] = k[2] and f, g ∈ R \ k.

(a) (x, y, fg) ∈ S(R)⇔ (x, y, f), (x, y, g) ∈ S(R)
(b) If g ∈ k[f ] \ k then (x, y, f) ∈ S(R)⇔ (x, y, g) ∈ S(R).

Proof. Throughout the proof of (a), we may assume that at least one of the conditions

(i) (x, y, fg) ∈ S(R), (ii) (x, y, f), (x, y, g) ∈ S(R)

holds. If (i) holds then the degree form of fg is a monomial in x, y, so the degree forms
of f and g are monomials in x, y. This last condition also holds if (ii) holds, so we
have:

f = λxayb + f ′ and g = µxαyβ + g′, for some λ, µ ∈ k∗, a, b, α, β ∈ N and
f ′, g′ ∈ R satisfying deg(f ′) < a+ b and deg(g′) < α + β.

It follows that

(4) degx(f) ≥ a, degy(f) ≥ b, degx(g) ≥ α, degy(g) ≥ β
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and that

fg = λµxa+αyb+β + h′, for some h′ ∈ R such that deg(h′) < a+ α + b+ β.

Now condition (i) holds iff degx(fg) = a+α and degy(fg) = b+β, iff the four equalities
hold in (4), iff (ii) holds. This proves (a).

To prove (b), define R̄ = k̄ ⊗k R where k̄ is the algebraic closure of k, note that
R̄ = k̄[x, y], and observe that

(x, y, f) ∈ S(R)⇔ (x, y, f) ∈ S(R̄) and (x, y, g) ∈ S(R)⇔ (x, y, g) ∈ S(R̄).

In other words, we may assume that k is algebraically closed. Then g = λ
∏n

i=1(f −λi)
for some n ≥ 1, λ ∈ k∗ and λ1, . . . , λn ∈ k, so part (a) implies that

(x, y, g) ∈ S(R) ⇔ ∀i (x, y, f − λi) ∈ S(R).

Clearly, (x, y, f − λi) ∈ S(R) is equivalent to (x, y, f) ∈ S(R), so (b) is proved. �

3.12. Proposition. Suppose that k ⊂ A ⊆ B, where A = k[2], B = k[2], and FracA =
FracB. Let k̄ be an algebraic extension of k, define Ā = k̄ ⊗k A and B̄ = k̄ ⊗k B.
Note that k̄ ⊂ Ā ⊆ B̄, Ā = k̄[2], B̄ = k̄[2], and Frac Ā = Frac B̄. If Ā ⊆ B̄ is simple
(in the sense of Def. 3.6), then so is A ⊆ B.

Proof. Consider the inclusions:

B �
� // B̄

A �
� //

?�

OO

Ā
?�

OO

We may assume that k̄ is the algebraic closure of k and that A 6= B. Then Ā 6= B̄,
so the corresponding birational morphism f : A2

k̄
= Spec B̄ → A2

k̄
= Spec Ā is not an

isomorphism and hence (by [CND14, 2.6(b)]) has a contracting curve; consequently,
there exists a height 1 prime ideal q of B̄ such that q∩ Ā is a maximal ideal of Ā. Note
that Ā and B̄ are integral extensions of A and B respectively, and that the Going-Down
Theorem holds for A ⊆ Ā and for B ⊆ B̄; so p = q ∩ B is a height 1 prime ideal of B
and m = p ∩ A is a maximal ideal of A.

The assumption that Ā ⊆ B̄ is simple means that there exist x′, y′ such that B̄ =
k̄[x′, y′] and, for some P (x′) ∈ k̄[x′], Ā = k̄[x′, P (x′)y′]. There follows:

(5)
each contracting curve of f is the zero-set of a polynomial (of degree 1) be-
longing to k̄[x′].

Let b be an irreducible element of B such that p = bB, let β1, . . . , βn be prime elements
of B̄ satisfying b =

∏n
i=1 βi and let qi = βiB̄ (1 ≤ i ≤ n). Then, for each i, qi ∩B = p,

so (qi ∩ Ā)∩A = m and consequently qi ∩ Ā is a maximal ideal of Ā. By (5), it follows
that βi ∈ k̄[x′] for all i, so b ∈ k̄[x′].

Pick v, w such that A = k[v, w]. Then v ∈ B and FracB = k(v, w), so v is a field
generator of B. By L. 3.10, there exist x, y such that B = k[x, y] and (x, y, v) ∈ S(B).

Let H(T ) ∈ k[T ] \ {0} be the minimal polynomial of v + m ∈ A/m over k; then
H(v) /∈ k and H(v) ∈ m ⊆ bB, i.e., b | H(v) in B. As (x, y, v) ∈ S(B) and H(v) ∈
k[v] \ k, L. 3.11 gives (x, y,H(v)) ∈ S(B) and then (x, y, b) ∈ S(B) because b | H(v).
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As B̄ = k̄[x, y], we also have (x, y, b) ∈ S(B̄); as b ∈ k̄[x′], using L. 3.11 again
gives (x, y, x′) ∈ S(B̄). So x′ = λxmyn + g(x, y) for some λ ∈ k̄∗, m,n ∈ N and
g(x, y) ∈ k̄[x, y] such that deg(x,y)(g) < m+ n, degx(x

′) = m, and degy(x
′) = n. As x′

is a variable of k̄[x, y], these conditions imply that (m,n) is either (1, 0) or (0, 1), so
x′ = λu+ µ for some u ∈ {x, y}, λ ∈ k̄∗ and µ ∈ k̄. As x′ ∈ Ā we then have u ∈ Ā, so
u is integral over A and u ∈ B ⊂ FracA, so u ∈ A. We showed that some variable of
B belongs to A; by L. 3.5, A ⊆ B is simple. �

3.13. Lemma. If Theorem 3.3 is valid in the special case where k is algebraically closed,
then it is valid in general.

Proof. Assume that Theorem 3.3 is valid in the algebraically closed case. Let K/k be
as in the introduction of Section 3 (with k an arbitrary field) and consider an infinite
descending chain

(
Ai
)
i∈N in A(K/k) such that

⋂∞
i=0 Ai 6= k. It has to be shown that(

Ai
)
i∈N is simple, in the sense of Def. 3.1.

Let k̄ be the algebraic closure of k and, for each i ∈ N, Āi = k̄ ⊗k Ai. Then all
Āi have the same field of fractions L, and

(
Āi
)
i∈N is an infinite descending chain in

A(L/k̄) such that
⋂∞
i=0 Āi 6= k̄. Since we are assuming that the algebraically closed

case of Theorem 3.3 is valid, it follows that
(
Āi
)
i∈N is simple, in the sense of Def. 3.1;

by L. 3.8, there exists N ∈ N such that

for each i ≥ N , the inclusion Āi ⊆ ĀN is simple, in the sense of Def. 3.6.

By Prop. 3.12, it follows that the same N satisfies:

for each i ≥ N , the inclusion Ai ⊆ AN is simple, in the sense of Def. 3.6.

Then L. 3.8 implies that
(
Ai
)
i∈N is simple, in the sense of Def. 3.1. �

The case where k is algebraically closed

Our next aim is to prove L. 3.24, which asserts that Theorem 3.3 is valid under the
assumption that k is algebraically closed. The proof of L. 3.24 is in several parts, and
makes heavy use of the results of [CND14]. In particular the proof of L. 3.18 makes
essential use of [CND14, Th. 3.15(c)]. Also note that L. 2.2.2 and Cor. 2.3.2 (of the
present paper) are used in the proof of Prop. 3.23.

Until the end of Section 3, we assume that k is algebraically closed.

3.14. Definition. Let A,B be k-algebras such that

A ⊆ B, FracA = FracB, A = k[2] and B = k[2]

and let Φ : SpecB → SpecA be the birational morphism determined by A ↪→ B.

(1) We say that Φ is of type (V) if there exist X, Y satisfying:

B = k[X, Y ] and A = k[X,ϕ(X)Y ], for some ϕ(X) ∈ k[X] \ {0}.
(2) We say that Φ is of type (G) if there exist X, Y satisfying:

B = k[X, Y ] and A = k[XaY b , XcY d], for some ( a bc d ) ∈M,

where M =
{ (

i j
k `

)
| i, j, k, ` ∈ N and i`− jk = ±1

}
.
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3.15. Definition. Let
(
Ai
)
i∈N be an infinite descending chain in A.

(a) Given natural numbers i ≤ j, we write Φij : SpecAi → SpecAj for the mor-
phism determined by the inclusion Ai ←↩ Aj. Thus Φij is a birational mor-
phism from SpecAi ∼= A2 to SpecAj ∼= A2. Note that Φjk ◦Φij = Φik whenever
i ≤ j ≤ k.

(b) Let τ be one of the symbols (V), (G). We say that the chain
(
Ai
)
i∈N is of type

τ if there exists N ∈ N such that, for all i, j ∈ N such that N ≤ i ≤ j, Φij is of
type τ in the sense of Def. 3.14.

(c) We say that the chain
(
Ai
)
i∈N is of bounded type if

{
c(Φ0j) | j ∈ N

}
is a finite

subset of N, or equivalently, if there exists k ∈ N such that c(Φ0j) ≤ c(Φ0k) for
all j ∈ N. (Here, c(Φij) denotes the number of contracting curves of Φij (see
paragraph 2.2); recall that c(Φij) = q(Φij), cf. [CND14, 2.2 and 2.6].)

3.16. Remark. We have Cont(Φ0j) ⊆ Cont(Φ0,j+1) and hence c(Φ0j) ≤ c(Φ0,j+1) for all
j ∈ N. It follows that

(
Ai
)
i∈N is of bounded type if and only if the sequence

(
c(Φ0j)

)
j∈N

eventually stabilizes.

3.17. Lemma. Let
(
Ai
)
i∈N be an infinite descending chain in A, of type (V). Then(

Ai
)
i∈N is simple.

Proof. The assumption implies that
(
Ai
)
i∈N satisfies condition (b) of L. 3.8. �

3.18. Lemma. Let
(
Ai
)
i∈N be an infinite descending chain in A, of bounded type.

Then there exists N ∈ N such that, for each choice of natural numbers i, j such that
N ≤ i ≤ j, Φij is of type (V) or (G).

Proof. Because
(
Ai
)
i∈N is of bounded type, there exists t ∈ N such that ∀j∈N c(Φ0j) ≤

c(Φ0t). Consider natural numbers i ≤ j such that Cont(Φij) * Miss(Φ0i); then [CND14,
2.16] implies that c(Φ0j) > c(Φ0i), so c(Φ0i) < c(Φ0t) and hence i < t. This shows that

(6) for all i, j ∈ N satisfying t ≤ i ≤ j, Cont(Φij) ⊆ Miss(Φ0i).

Next, define Ω =
{

(i, j) ∈ N2 | i ≤ j and ∃k≥j Miss(Φij) ⊆ Cont(Φjk)
}

. Let us show
that there exists ` ∈ N satisfying:

(7) ∀i,j∈N
(
` ≤ i ≤ j =⇒ (i, j) ∈ Ω

)
.

By contradiction, suppose that ` does not exist. Then there exists an infinite sequence
(i1, j1), (i2, j2), . . . of elements of N2 \ Ω satisfying i1 < j1 ≤ i2 < j2 ≤ i3 < j3 ≤ . . . .
Define j0 = 0 and note that the sequence j0 < j1 < j2 < . . . satisfies

(8) (jν , jν+1) /∈ Ω for all ν ∈ N.

Indeed, if (jν , jν+1) ∈ Ω then there exists k ≥ jν+1 such that

Miss(Φiν+1jν+1) ⊆ Miss(Φjνjν+1) ⊆ Cont(Φjν+1k)

(where the first inclusion is a simple consequence of jν ≤ iν+1 < jν+1 and of [CND14,
2.12]), and this implies that (iν+1, jν+1) ∈ Ω, a contradiction. So (8) is proved.

Now let s be a positive integer; we claim:

(9) q(Φjν−1js) > q(Φjνjs), for all ν ∈ {1, . . . , s}.
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Indeed, let ν ∈ {1, . . . , s} and consider:

A2

Φjν−1jν

//

Φjν−1js

++A2

Φjνjs

// A2

We have Miss(Φjν−1jν ) * Cont(Φjνjs) by (8), then q(Φjν−1js) > q(Φjνjs) by [CND14,
2.16], and this proves (9). Applying (9) repeatedly gives

q(Φj0js) > q(Φj1js) > q(Φj2js) > · · · > q(Φjs−1js) > q(Φjsjs) = 0,

so c(Φ0js) = q(Φ0js) = q(Φj0js) ≥ s. Since this holds for arbitrary s ≥ 1, we obtain that{
c(Φ0j) | j ∈ N

}
is not a finite set, which contradicts the hypothesis that

(
Ai
)
i∈N is

of bounded type. This contradiction shows that there exists ` ∈ N satisfying (7).
Choose ` ∈ N satisfying (7) and define N = max(t, `). Consider any i, j ∈ N such

that N ≤ i ≤ j. Then (6) and (7) imply that

(10) Cont(Φij) ⊆ Miss(Φ0i) and ∃k≥j Miss(Φij) ⊆ Cont(Φjk).

By [CND14, 2.15] and (10),

(11) Cont(Φij) and Miss(Φij) are admissible.

Then [CND14, Th. 3.15(c)] and (11) imply that Φij is of type (V) or (G). �

3.19. Lemma. Let
(
Ai
)
i∈N be an infinite descending chain in A. Let i ≤ j be natural

numbers and suppose that Φij is of type (G) but not of type (V). Then Φij has exactly 2
contracting curves and 2 missing curves. Let X, Y be irreducible elements of Ai whose
zero-sets in SpecAi are the contracting curves of Φij. Then

(1) Ai = k[X, Y ]
(2) Aj = k[XaY b , XcY d], for some ( a bc d ) ∈M such that min(a, b, c, d) ≥ 1.
(3) XaY b and XcY d are irreducible elements of Aj and their zero-sets in SpecAj

are precisely the two missing curves of Φij.

Proof. By [CND14, 2.6(a)], if Φij has two contracting curves then it also has two missing
curves. Since Φij is of type (G), there exists (X0, Y0) satisfying

Ai = k[X0, Y0] and Aj = k[Xa0
0 Y

b0
0 , Xc0

0 Y
d0

0 ] for some
(
a0 b0
c0 d0

)
∈M.

We have min(a0, b0, c0, d0) ≥ 1, otherwise Φij would be of type (V). It follows that Φij

has exactly two contracting curves, namely, the zero-set of X0 and the zero-set of Y0 in
SpecAi. Let X, Y be as in the statement of the lemma. Then the principal ideals (X0),
(Y0), (X) and (Y ) of Ai satisfy either (i) (X0) = (X) and (Y0) = (Y ), or (ii) (X0) = (Y )
and (Y0) = (X). Note that assertion (1) is true in both cases. If (i) holds (resp. (ii)
holds) then Aj = k[XaY b , XcY d] with ( a bc d ) =

(
a0 b0
c0 d0

)
(resp. ( a bc d ) =

(
b0 a0
d0 c0

)
). In both

cases we have ( a bc d ) ∈ M and min(a, b, c, d) ≥ 1, so assertion (2) holds. Assertion (3)
is an easy consequence of (1) and (2). �

3.20. Proposition. If
(
Ai
)
i∈N is of bounded type and not of type (V), then

⋂∞
i=0Ai = k.
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Proof. For each τ ∈ {(V), (G)}, define Sτ =
{

(i, j) ∈ N2 | i ≤ j and Φij is of type τ
}

.

As
(
Ai
)
i∈N is of bounded type, L. 3.18 implies that there is a natural number N

satisfying:

(12) for all i, j ∈ N such that N ≤ i ≤ j, (i, j) ∈ S(V) ∪ S(G).

As
(
Ai
)
i∈N is not of type (V), there exist j0, j1 ∈ N such that N ≤ j0 < j1 and

(j0, j1) ∈ S(G) \ S(V). Suppose that N ≤ j0 < j1 < · · · < jk (where k ≥ 1) are natural

numbers such that (jν , jν+1) ∈ S(G) \ S(V) for all ν ∈ {0, . . . , k − 1}. As
(
Ai
)
i∈N is not

of type (V), there exist i, jk+1 ∈ N such that jk ≤ i < jk+1 and (i, jk+1) ∈ S(G) \ S(V).
Because Φijk+1

is of type (G) but not of type (V), L. 3.19 implies that there exist missing
curves D 6= D′ of Φijk+1

such that D ∩D′ 6= ∅; as D,D′ are missing curves of Φjkjk+1
,

it follows that Φjkjk+1
is not of type (V), so (jk, jk+1) ∈ S(G) \ S(V). By induction, this

constructs an infinite sequence N ≤ j0 < j1 < j2 < . . . of natural numbers satisfying:

(13) for each ν ∈ N, Φjνjν+1 is of type (G) but not of type (V).

We claim that

(14) for each ν ∈ N, Miss(Φjνjν+1) = Cont(Φjν+1,jν+2).

To see this, first note that (by L. 3.19) Φjνjν+1 has two contracting curves which have
a common point; thus Φjνjν+2 has the same property, and hence is not of type (V); in
view of (12), we get that Φjνjν+2 is of type (G) but not of type (V). So each element
Φ of {Φjνjν+1 ,Φjν+1jν+2 ,Φjνjν+2} is of type (G) but not of type (V) and hence satisfies
c(Φ) = 2 = q(Φ). Then [CND14, 2.16(a)] implies that Miss(Φjνjν+1) ⊆ Cont(Φjν+1,jν+2),
and [CND14, 2.16(b)] implies that Miss(Φjνjν+1) ⊇ Cont(Φjν+1,jν+2); so (14) is true.

Let us now explain how to construct a sequence of pairs (Xν , Yν) satisfying the
following conditions for all ν ∈ N:

(i) Ajν = k[Xν , Yν ]

(ii) (Xν+1, Yν+1) = (Xaν+1
ν Y bν+1

ν , Xcν+1
ν Y dν+1

ν ) for some
(
aν+1 bν+1

cν+1 dν+1

)
∈M

satisfying min(aν+1, bν+1, cν+1, dν+1) ≥ 1.

By (13), Φj0j1 is of type (G) but not of type (V). So Φj0j1 has exactly 2 contract-
ing curves; we begin the construction by choosing irreducible elements X0, Y0 of Aj0
whose zero-sets in SpecAj0 are the contracting curves of Φj0j1 . Then L. 3.19 implies

that Aj0 = k[X0, Y0] and Aj1 = k[Xa1
0 Y

b1
0 , Xc1

0 Y
d1

0 ] for some
(
a1 b1
c1 d1

)
∈ M satisfying

min(a1, b1, c1, d1) ≥ 1. Define (X1, Y1) = (Xa1
0 Y

b1
0 , Xc1

0 Y
d1

0 ); then, again by L. 3.19, the
zero-sets of X1 and Y1 in SpecAj1 are precisely the missing curves of Φj0j1 ; so, by (14),
they are the contracting curves of Φj1j2 . It is now clear that, using induction together
with L. 3.19, (13) and (14), we obtain an infinite sequence of pairs (Xν , Yν) with the
desired properties.

The above statements (i) and (ii) imply that, for all ν ∈ N \ {0},
(Xν , Yν) = (Xαν

0 Y βν
0 , Xγν

0 Y δν
0 ), where

(
αν βν
γν δν

)
=
(
aν bν
cν dν

)
· · ·
(
a2 b2
c2 d2

) (
a1 b1
c1 d1

)
.

It also follows that
(
αν βν
γν δν

)
∈M and min(αν , βν , γν , δν) ≥ 2ν−1 for all ν ∈ N \ {0}.
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Now let deg0 : Aj0 \ {0} = k[X0, Y0] \ {0} → N be the total degree of polynomials in
X0, Y0. We claim that, given any ν ∈ N,

(15) if f ∈ Ajν = k[Xν , Yν ] and f /∈ k then deg0(f) ≥ 2ν.

This is obvious if ν = 0, so let ν ∈ N \ {0} and f =
∑

i,j aijX
i
νY

j
ν ∈ Ajν \ k (where

aij ∈ k). Then

(16) f =
∑

i,j aijX
αν i+γνj
0 Y βν i+δνj

0 ,

where for each (i, j) 6= (0, 0) we have ανi+γνj+βνi+δνj ≥ min(αν +βν , γν +δν) ≥ 2ν .
We have det

(
αν βν
γν δν

)
= ±1 by definition of M, so

the map N2 → N2, (i, j) 7→ (ανi+ γνj, βνi+ δνj), is injective.

It follows that there are no cancellations in the sum (16). So deg0(f) ≥ 2ν and (15) is
proved. Clearly, (15) implies that

⋂∞
i=1 Ai = k, and this completes the proof. �

3.21. Lemma. Let
(
Ai
)
i∈N be an infinite descending chain in A and let R =

⋂∞
i=0Ai.

Then for each F ′ ∈ R \ k there exists F ∈ R \ k such that k[F ′] ⊆ k[F ] and such that
k[F ] is a maximal element of the set Σ =

{
k[G] | G ∈ K \ k

}
.

Proof. Recall that K is defined in the introduction of Section 3. If k[G0] ⊆ k[G1] ⊆ . . .
is an ascending sequence of elements of Σ and if Ω denotes the algebraic closure of k(G0)
in K then Ω/k is a finitely generated extension, so Ω/k(G0) is a finite extension. As
k(Gi) ⊆ Ω for all i, the sequence of fields

(
k(Gi)

)
i∈N stabilizes and, consequently, the

sequence of rings
(
k[Gi]

)
i∈N stabilizes. This shows that Σ satisfies ACC. So, given

F ′ ∈ R \ k, we may choose F ∈ K such that k[F ′] ⊆ k[F ] and such that k[F ] is a
maximal element of Σ. For each i ∈ N, Ai is a normal domain, F ∈ FracAi and F is
integral over k[F ′] ⊂ Ai; so F ∈ Ai and hence F ∈ R. �

The following well-known fact is needed in the next proof.

3.22. Lemma. Let k be an algebraically closed field, n ≥ 1, A = k[n] and F ∈ A \ k.
The set

{
λ ∈ k | F − λ is not irreducible in A

}
is infinite if and only if F = P (G)

for some G ∈ A and P (T ) ∈ k[T ] such that degT P (T ) > 1.

Proof. This can be derived from a general Theorem on linear systems proved by Bertini
(and reproved by Zariski) in characteristic zero, then generalized to all characteristics
by Matsusaka [Mat50]. For the result as stated here, see [Sch00], Chap. 3, § 3, Cor. 1.

�

3.23. Proposition. Let
(
Ai
)
i∈N be an infinite descending chain in A which is not of

bounded type. If
⋂∞
i=0Ai 6= k, then

(
Ai
)
i∈N is simple.

Proof. Pick F ∈
⋂∞
i=0Ai, F /∈ k, such that k[F ] is a maximal element of the set Σ

defined in L. 3.21. For each i ∈ N, let A2 fi−→ A1 be the morphism determined by the
inclusion map Ai ←↩ k[F ]. For each i ∈ N, Cor. 2.3.2 gives

A2

Φi,i+1

//

fi

((A2

fi+1

// A1 dic(fi) = dic(fi+1) + |Misshor(Φi,i+1, fi+1)|,
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which shows that dic(fi) ≥ dic(fi+1) for all i ∈ N; so there exists N ∈ N such that(
dic(fi)

)∞
i=N

is a constant sequence. Then, given any i, j ∈ N such that N ≤ i ≤ j, we
get Misshor(Φij, fj) = ∅ by applying Cor. 2.3.2 again:

A2

Φi,j

//

fi

((A2

fj

// A1 dic(fi) = dic(fj) + |Misshor(Φi,j, fj)|.

To prove the Lemma it suffices to show that
(
Ai
)∞
i=N

is simple. The reader may verify

that
(
Ai
)∞
i=N

is not of bounded type, and it is clear that
⋂∞
i=N Ai 6= k; so we may as

well replace
(
Ai
)
i∈N by

(
Ai
)∞
i=N

throughout, i.e., we may assume that

(17) Misshor(Φij, fj) = ∅ for all natural numbers i ≤ j.

By maximality of k[F ] in Σ, it follows that
{
λ ∈ k | F − λ is not irreducible in A0

}
is a finite set (see L. 3.22); so there exists a finite set S of closed points of A1 such that:

(18) For each closed point y ∈ A1 \ S, f−1
0 (y) is an irreducible curve.

Let MS be the number of irreducible curves included in the set f−1
0 (S). As

(
Ai
)
i∈N

is not of bounded type, we can choose j ∈ N such that c(Φ0j) > MS. In fact, there
exists NS ∈ N such that c(Φ0j) > MS holds for all j ≥ NS. We claim:

(19) For each j ≥ NS, F is a variable of Aj.

Indeed, consider j ≥ NS. Then c(Φ0j) > MS and hence there exists a contracting curve
C of Φ0j such that C * f−1

0 (S). Since

A2

Φ0j

//

f0

((A2

fj

// A1

commutes, f0(C) is a point, and hence is a point Q ∈ A1 \ S. By (18), C = f−1
0 (Q).

As Misshor(Φ0j, fj) = ∅ by (17), A2 Φ0j−−→ A2 fj−→ A1 satisfies the hypothesis of L. 2.2.2
and consequently f−1

j (Q) is a coordinate line in A2 = SpecAj. For a suitable choice of

λ ∈ k, f−1
j (Q) is the zero-set of the ideal (F − λ)Aj; so F − λ is a power of a variable

of Aj; by maximality of k[F ] in Σ, F − λ is in fact a variable of Aj. So F is a variable
of Aj, i.e., (19) is proved.

By (19) there exists G such that ANS = k[F,G] and, given any j ≥ NS,

F ∈ Aj ⊆ ANS = k[F,G];

then L. 3.5 implies that Aj = k[F, ϕj(F )G] for some ϕj(F ) ∈ k[F ], showing that(
Ai
)
i∈N is simple. �

3.24. Lemma. Theorem 3.3 is valid if k is algebraically closed.

Proof. Assume that k is algebraically closed and let
(
Ai
)
i∈N be an infinite descending

chain in A such that
⋂∞
i=0Ai 6= k. By Prop. 3.20, one of the following holds:

(i)
(
Ai
)
i∈N is of type (V);

(ii)
(
Ai
)
i∈N is not of bounded type.

It follows that
(
Ai
)
i∈N is simple, by L. 3.17 in case (i) and by Prop. 3.23 in case (ii). �
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By Lemmas 3.13 and 3.24, the proof of Theorem 3.3 is complete.

4. Infinite chains of inclusions: the general case

Let k be a field. We consider infinite sequences of rings
(
Ai
)
i∈N where Ai = k[2] for

all i and A0 ⊃ A1 ⊃ A2 ⊃ · · · are strict inclusions. We do not assume that the rings
have the same field of fractions. If

⋂∞
i=0Ai 6= k, what can be said? If we are willing

to assume that char k = 0, we obtain a complete answer in Thm 4.15. In arbitrary
characteristic, we obtain partial answers in Prop. 4.5 and Prop. 4.14.

Lemma 4.1 is probably well known, but in lack of a reference we provide a proof.

4.1. Lemma. Let R =
⋂∞
i=0Ai, where A0 ⊇ A1 ⊇ A2 ⊇ · · · is a sequence of UFDs

satisfying A∗i = A∗i+1 for all i. Then R∗ = A∗0, R is a UFD and the following holds:

(20) for each prime element p of R, p is a prime element of Ai for i� 0.

Proof. It is clear that R ∩ A∗0 = R∗. Define a map `i : Ai \ {0} → N as follows: given
b ∈ Ai \ {0}, consider a factorization b =

∏n
j=1 pj where p1, . . . , pn are prime elements

of Ai; then set `i(b) = n (set `i(b) = 0 if b ∈ A∗i ). Now consider an irreducible element
p ∈ R. It is clear that `0(p) ≥ `1(p) ≥ `2(p) ≥ . . . , so there exist M and n such that
`i(p) = n for all i ≥ M . Consider the prime factorization of p in AM , p = q1 · · · qn.
Let i ≥ M and consider the prime factorization of p in Ai, p = qi1 · · · qin. If some qij
is not prime in AM then `i(p) < `M(p), which is not the case; so qi1, . . . , qin are prime
in AM and consequently (after permuting qi1, . . . , qin if necessary) we have qj = λjqij
(λj ∈ A∗M) for all j = 1, . . . , n. Since A∗M = A∗i , we get q1, . . . , qn ∈ Ai, and this holds
for all i ≥M (so for all i ∈ N). Thus q1, . . . , qn ∈ R, and since p is irreducible in R we
have n = 1. Since `i(p) = n = 1 for all i ≥M , p is prime in Ai for all i ≥M . We claim
that p is prime in R. Indeed, consider u, v ∈ R such that p | uv in R. Then p | uv in
each Ai. Since p is prime in Ai for all i ≥ M , there exists w ∈ {u, v} for which the
condition “p | w in Ai” holds for infinitely many i; then w/p ∈ Ai for infinitely many
i, so w/p ∈ R and p | w in R. We have shown:

(21) if p is an irreducible element of R then p is prime in R
and prime in Ai for i� 0.

Note that (21) implies (20); let us argue that it also implies that R is a UFD. Let
x ∈ R \ (R∗ ∪ {0}). Consider all possible factorizations of x in R \ (R∗ ∪ {0}):
(22) x = x1 · · · · · xs, with s ≥ 1 and x1, . . . , xs ∈ R \ (R∗ ∪ {0}).
Since R ∩ A∗0 = R∗, we have x1, . . . , xs ∈ A0 \ (A∗0 ∪ {0}) and consequently s ≤ `0(x).
So we may choose a factorization (22) of x which maximizes s; in this factorization,
each xi is necessarily an irreducible element of R, hence, by (21), a prime element of
R. So R is a UFD. �

The following is well known (see for instance [Miy94, L. 1.39]):

4.2. Lemma. Consider rings k ⊆ R ⊆ A where k is a field, A is an affine k-domain
and R has transcendence degree 1 over k. Then R is k-affine.
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4.3. Lemma. Suppose that k ⊆ R ⊆ A where k is a field, A = k[n] for some n > 0,
and R is a normal domain of transcendence degree 1 over k. Then R = k[1].

Proof. By L. 4.2, R is k-affine and hence a Dedekind domain; then [Zak71] gives the
desired conclusion. �

4.4. Definition. Let R be a subring of a domain S. We call R factorially closed in S
if the conditions u, v ∈ S \ {0} and uv ∈ R imply u, v ∈ R.

4.5. Proposition. Let k be a field. Let R =
⋂∞
i=0 Ai, where A0 ⊃ A1 ⊃ A2 ⊃ · · · is a

strictly decreasing sequence of rings such that Ai = k[2] for all i. Assume that R 6= k.
Then R = k[1] and R is factorially closed in Ai for i� 0.

Proof. If trdegk(R) 6= 1 then FracA0 is a finite extension of FracR, so there exists
N ≥ 0 such that

(
FracAi

)
i≥N is a constant sequence; then Theorem 3.3 applied to(

Ai
)
i≥N gives

⋂∞
i=N Ai = k[1], which contradicts the assumption that trdegk(R) 6= 1.

This shows that trdegk(R) = 1.
Since trdegk(R) = 1 and R is a normal domain included in A0 = k[2], L. 4.3 implies

R = k[1].

By L. 4.1,

(23) for each prime element p of R, p is a prime element of Ai for i� 0.

There remains to show that R is factorially closed in Ai for i � 0. We first prove
the following weaker statement:

(24) There exists N ≥ 0 such that R is algebraically closed in Ai for all i ≥ N .

To see this, consider the algebraic closure L of FracR in FracA0 and define Ri = L∩Ai.
For each i we have Ri = k[1] by L. 4.3; as

⋂
i∈NRi = R = k[1], it follows that the

sequence R0 ⊇ R1 ⊇ R2 ⊇ · · · stabilizes and hence that R = Ri = L ∩ Ai for i � 0.
So R is algebraically closed in Ai for i� 0, which proves (24).

Let us assume that k is algebraically closed. Write R = k[F ]. Consider the N of
(24); then k[F ] is algebraically closed in AN and consequently

E =
{
λ ∈ k | F − λ is not irreducible in AN

}
is a finite set (see L. 3.22). So, by (23), there exists M ≥ N such that

(25) for all i ≥M and all λ ∈ E, F − λ is irreducible in Ai.

Then

(26) for all i ≥M and all λ ∈ k, F − λ is irreducible in Ai.

Indeed, let i ≥M and λ ∈ k; if λ ∈ E, then F −λ is irreducible in Ai by (25); if λ /∈ E,
then F − λ is irreducible in AN by definition of E, and it follows that it is irreducible
in Ai because Ai ⊆ AN and A∗i = A∗N . So (26) is proved.

Then (26) implies that, for every i ≥M and every prime element p of R, p is prime
in Ai. Thus R is factorially closed in Ai for i ≥M (if k is algebraically closed).
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Now drop the assumption that k is algebraically closed, and let k̄ be an algebraic
closure of k. Applying k̄⊗k( ) to

(
Ai
)
i∈N produces a sequence

(
Ai
)
i∈N of rings Ai = k̄[2]

satisfying all hypotheses of the Proposition. Define R =
⋂∞
i=0Ai. By the preceding

paragraph, there exists M ′ such that R is factorially closed in Ai for all i ≥ M ′.
Let us deduce that R is factorially closed in Ai for all i ≥ max(N,M ′), where N is
as in (24). Let i ≥ max(N,M ′) and consider the commutative diagram of injective
homomorphisms:

Ai // Ai

R //

OO

R

OO

Consider u, v ∈ Ai \ {0} satisfying uv ∈ R; then u, v ∈ Ai \ {0} satisfy uv ∈ R, so
u, v ∈ R since R is factorially closed in Ai (because i ≥ M ′). Since R = k[1] and
R = k̄[1], R is algebraic over R. Thus u, v are elements of Ai which are algebraic over
R; since i ≥ N , we get u, v ∈ R by (24), showing that R is factorially closed in Ai. �

4.6. Let k be an algebraically closed field and f : X → Y a dominant morphism of
k-varieties of the same dimension. Let k(X) and k(Y ) denote the function fields of
X and Y respectively. Then k(X)/k(Y ) is a finite extension of fields and we define
deg f = [k(X) : k(Y )], degs f = [k(X) : k(Y )]s and degi f = [k(X) : k(Y )]i (that is,
consider the unique field L such that k(Y ) ⊆ L ⊆ k(X), L is separable over k(Y ) and
k(X) is purely inseparable over L; then degs f = [L : k(Y )] and degi f = [k(X) : L]).
We say that f is a separable (resp. purely inseparable) morphism if k(X)/k(Y ) is a
separable (resp. purely inseparable) extension.

4.7. Notation. Let C be a curve over an algebraically closed field k.

(1) Let g(C) denote the geometric genus of a nonsingular projective model of C.
(2) Suppose that C is affine, let k[C] be the coordinate algebra of C and k(C) the

function field of C (so k ⊂ k[C] ⊂ k(C)). The number of places at infinity
of C is, by definition, the number of valuation rings O of k(C)/k satisfying
k[C] * O. We shall write n∞(C) for the number of places at infinity of an
affine curve C. Note that n∞(C) ∈ N \ {0}.

4.8. Lemma. Let X, Y be nonsingular projective curves over an algebraically closed
field k, and let f : X → Y be a finite, separable morphism. Then

2g(X)− 2 ≥ n(2g(Y )− 2) +
∑
x∈X

(ex − 1)

where n = deg f and ex is the ramification index of f at x.

Proof. We have 2g(X)−2 = n(2g(Y )−2)+
∑

x∈X length(ΩX/Y )x by Hurwitz’s Theorem
[Har77, Ch. IV, 2.4], and length(ΩX/Y )x ≥ ex − 1 by [Har77, Ch. IV, 2.2(c)]. �

4.9. Lemma. Let ϕ : X → Y be a dominant morphism of affine curves over an
algebraically closed field k.

(1) n∞(X) ≥ n∞(Y )
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(2) If ϕ is purely inseparable, then g(X) = g(Y ).
(3) If n∞(X) = n∞(Y ) and ϕ is not purely inseparable, then either g(X) > g(Y )

or
g(X) = 0 = g(Y ) and n∞(X) = n∞(Y ) ≤ 2.

Proof. (1) Let X̃ and Ỹ be nonsingular projective curves such that k(X̃) = k(X) and
k(Ỹ ) = k(Y ). Then ϕ : X → Y induces a morphism f : X̃ → Ỹ . Let r = n∞(Y )
and consider the points Q1, . . . , Qr ∈ Ỹ corresponding to the r places at infinity of Y .
Then n∞(X) ≥ |f−1({Q1, . . . , Qr})| ≥ r, so n∞(X) ≥ n∞(Y ).

(2) If ϕ is purely inseparable then g(X) = g(Y ) follows from [Har77, Ch. IV, 2.5].
(3) From now-on, assume that ϕ is not purely inseparable. Then f factors as

X̃
fi−→ C

fs−→ Ỹ

where C is a nonsingular projective curve, fi is purely inseparable, fs is separable and
deg(fs) ≥ 2. Let n = deg(fs) and, for each P ∈ C, let eP ≥ 1 be the ramification index
of fs at P .

Also assume that n∞(X) = n∞(Y ). Then, for each j = 1, . . . , r, f−1(Qj) is one

point of X̃; so f−1
s (Qj) is one point Pj ∈ C. The ramification index ePj of fs at Pj

satisfies ePj = [k(C) : k(Y )] = n for all j = 1, . . . , r, because the valuation ring OPj is
the unique extension of the valuation ring OQj via the field extension k(C)/k(Y ).

Note that g(X) = g(C), again by [Har77, Ch. IV, 2.5]. Applying L. 4.8 to the
separable morphism fs : C → Y gives the first inequality in:

(27) 2g(X)− 2 = 2g(C)− 2 ≥ n(2g(Y )− 2) +
∑
P∈C

(eP − 1)

≥ n(2g(Y )− 2) +
r∑
i=1

(ePi − 1) = n(2g(Y )− 2) + r(n− 1)

where n ≥ 2 and r ≥ 1. In particular g(X) − 1 > n(g(Y ) − 1), so g(X) > 0 implies
g(X) > g(Y ). If g(X) = 0 then −2 ≥ n(2g(Y )− 2) + r(n− 1), so g(Y ) = 0 and r ≤ 2,
as desired. �

4.10. Definition. Let k be an algebraically closed field and F ∈ A = k[2]. We say that
F is a generally rational polynomial in A if, for almost all λ ∈ k, F − λ is irreducible
in A and the zero-set of F − λ in SpecA is a rational curve.

4.11. Remark. Let k be an algebraically closed field and F ∈ A = k[2]. If char k = 0,
F is a field generator in A if and only if it is a generally rational polynomial in A (see
the introduction of [MS80]). This is not true in positive characteristic. It is shown in
[Dai15] that, in arbitrary characteristic, F is a field generator in A if and only if it is
a generally rational polynomial in A without moving singularities.

4.12. Lemma. Let k be an algebraically closed field and F ∈ A = k[2] a generally
rational polynomial in A. Then

dic(F,A)− 1 =
∑

λ∈k(Nλ − 1),

where Nλ is the number of irreducible components of the zero-set of F − λ in SpecA.
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Proof. See paragraph 2.3 for the definition of dic(F,A). If k = C, this result is either
one of [Suz74, Th. 2] or [Kal92, Cor. 2]; if char k = 0, see [MS80, 1.6]; for the general
case, see [Dai15, 1.11]. �

4.13. Definition. Let k be a field, and consider an infinite sequence of rings
(
Ai
)
i∈N

where Ai = k[2] for all i and A0 ⊃ A1 ⊃ A2 ⊃ · · · are strict inclusions. We say that(
Ai
)
i∈N is of p.i. type if there exists N ∈ N such that, for all i ≥ N , FracAi is a

purely inseparable extension of FracAi+1. (Note that if K is a field then the trivial
field extension K/K is both separable and purely inseparable. Consequently, if the
sequence of fields

(
FracAi

)
i∈N stabilizes then

(
Ai
)
i∈N is of p.i. type.)

4.14. Proposition. Let k be an algebraically closed field. Let R =
⋂∞
i=0Ai, where

A0 ⊃ A1 ⊃ A2 ⊃ · · · is a strictly decreasing sequence of rings such that Ai = k[2] for
all i. Assume that R 6= k and that

(
Ai
)
i∈N is not of p.i. type. Then R = k[F ] = k[1]

and, for i � 0, F is a generally rational polynomial in Ai with one dicritical and at
most two places at infinity.

Remark. The last sentence of the above statement gives some properties of F as an
element of Ai; in that context, “F has one dicritical” means dic(F,Ai) = 1, and “F
has at most two places at infinity” means:

for general λ ∈ k, n∞(Ci,λ) ≤ 2

where Ci,λ ⊂ SpecAi is the zero-set of F − λ in SpecAi.

Proof of Prop. 4.14. By Prop. 4.5, R = k[1] and R is factorially closed in Ai for i� 0.
So there exists N such that, for all i ≥ N and all λ ∈ k, F −λ is an irreducible element
of Ai. Replacing

(
Ai
)
i∈N by

(
Ai
)
i≥N if necessary, we may assume that

(28) for all i ∈ N and all λ ∈ k, F − λ is an irreducible element of Ai.

For each i ∈ N, let Si = SpecAi ∼= A2; for each λ ∈ k, let Ci,λ ⊂ Si be the zero-set
of F − λ (so Ci,λ is an integral curve). Let ϕi : Si → Si+1 be the dominant morphism
determined by the inclusion Ai ←↩ Ai+1, and let ϕi,λ : Ci,λ → Ci+1,λ be the restriction
of ϕi. For each i ∈ N, there exist gi, ni ∈ N satisfying

for general λ ∈ k, g(Ci,λ) = gi and n∞(Ci,λ) = ni

(see 4.7 for the notation). By Lemma 4.9, ni ≥ ni+1 for all i; so there exists N such
that (ni)i≥N is a constant sequence; replacing

(
Ai
)
i∈N by

(
Ai
)
i≥N , we may assume that

(ni)i∈N is constant. Under that assumption, Lemma 4.9 implies that gi ≥ gi+1 for all
i; so we may assume that (gi)i∈N is a constant sequence.

For each i ∈ N, we also have

for general λ ∈ k, ϕi,λ : Ci,λ → Ci+1,λ is a dominant morphism
and degs(ϕi,λ) = [FracAi : FracAi+1]s

(this follows from [Dai15, L. 2.9]). The assumption that
(
Ai
)
i∈N is not of p.i. type

implies that [FracAi : FracAi+1]s > 1 for infinitely many i ∈ N; so there are infinitely
many i ∈ N satisfying:

(29) degs(ϕi,λ) > 1 for almost all λ ∈ k.
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By Lemma 4.9, for each i satisfying (29) we have either gi > gi+1 or

gi = 0 = gi+1 and ni = ni+1 ≤ 2;

as (gi)i∈N and (ni)i∈N are constant sequences, it follows that gi = 0 and ni ≤ 2 for all
i ∈ N. Thus F is a generally rational polynomial in Ai with at most two places at
infinity. Let i ∈ N; then L. 4.12 gives

(30) dic(F,Ai)− 1 =
∑

λ∈k(Nλ − 1),

where Nλ is the number of irreducible components of the zero-set of F − λ in SpecAi.
By (28), the right hand side of (30) is 0, so dic(F,Ai) = 1. �

4.15. Theorem. Let k be a field of characteristic zero. Let R =
⋂∞
i=0Ai, where A0 ⊃

A1 ⊃ A2 ⊃ · · · is a strictly decreasing sequence of rings such that Ai = k[2] for all i.
Assume that R 6= k. Then R = k[1] and Ai = R[1] for i� 0.

Remark. Since R = k[1], we have R = k[F ] for some F . The last assertion states that
F is a variable of Ai for all i� 0.

Proof of Thm 4.15. Let k̄ be an algebraic closure of k. Applying k̄ ⊗k ( ) to
(
Ai
)
i∈N

produces a sequence
(
Ai
)
i∈N of rings Ai = k̄[2] satisfying all hypotheses of the Theorem.

Define R =
⋂∞
i=0Ai. We know that R = k[1] and that R = k̄[1]; write R = k[F ] and

R = k̄[u].
Assume that the theorem is true in the case where k is algebraically closed; then

Ai = R
[1]

for all i � 0. Moreover, R is factorially closed (hence algebraically closed)
in Ai for i� 0. Let i be large enough so that

Ai = R
[1]

and R is algebraically closed in Ai.

Then u is a variable of Ai. Since F ∈ k̄[u], the statement

Let K ⊆ L be fields of characteristic zero, X, Y indeterminates over L
and ϕ ∈ K[X, Y ] ⊆ L[X, Y ]. If ϕ ∈ L[u] for some variable u of L[X, Y ],
then ϕ ∈ K[u′] for some variable u′ of K[X, Y ].

(whose proof is left to the reader) implies that F ∈ k[u′] for some variable u′ of Ai.
Since F ∈ k[u′] ⊂ Ai and R = k[F ] is algebraically closed in Ai, we have R = k[u′]
and hence Ai = R[1]. This shows that if the theorem is true in the case where k is
algebraically closed, then it is true in general.

From now-on, assume that k is algebraically closed.
If the sequence of fields

(
FracAi

)
i∈N stabilizes, then we are done by Theorem 3.3. So

we may assume that that sequence does not stabilize, which (together with char k = 0)
implies that

(
Ai
)
i∈N is not of p.i. type. Then Prop. 4.14 implies that, for i � 0, F is

a generally rational polynomial in Ai with at most one dicritical.
Since char k = 0, every generally rational polynomial is a field generator (cf. Rem.

4.11); so, for i � 0, F is a field generator in Ai with only one dicritical. Then F is a
variable of Ai (the fact that a field generator with one dicritical is a variable is due to
Russell, but see for instance [CND15b, 5.2] for an explicit statement and a proof). �
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5. Sets of polynomial rings

5.1. Lemma. Let k be a field, let A ⊆ B be such that A = k[2] and B = k[2], and let

R∗(A,B) =
{
R | A ⊆ R ⊆ B, R = k[2], and FracR = FracA

}
.

Then there exists N ∈ N such that all chains of strict inclusions

R0 ⊂ R1 ⊂ · · · ⊂ Rs

of elements of R∗(A,B) satisfy s ≤ N .

Proof. Let k̄ be an algebraic closure of k, Ā = k̄ ⊗k A = k̄[2] and B̄ = k̄ ⊗k B = k̄[2].
Then R 7→ k̄ ⊗k R is an order-preserving injective map from R∗(A,B) to R∗(Ā, B̄).
So, we may assume that k is algebraically closed. This allows us to use the results of
[CND14] and [Dai91].

Let B0 = B ∩ FracA; note that B0 is a normal domain and, by Zariski’s result
[Zar54], a finitely generated k-algebra. Thus S0 = SpecB0 is a normal affine surface,
and we may consider a resolution of singularities π : S → S0 of S0. In particular, S is
a nonsingular surface and π : S → S0 is a morphism which is birational and surjective.
Let h : S → A2 be the composition S

π−→ S0 = SpecB0 → SpecA = A2; then h is a
birational morphism of nonsingular surfaces, so n(h) ∈ N is defined (see [CND14, 2.3]).

Each R ∈ R∗(A,B) determines a pair S
fR−→ A2 gR−→ A2 of birational morphisms defined

by the commutative diagram

S

π

��

fR

$$

h

$$
SpecB // SpecB0

// SpecR
gR // SpecA

B B0
? _oo R? _oo A? _oo

We claim:

(31) each curve in SpecR meets the image of SpecB → SpecR.

Indeed, let C ⊂ SpecR be a curve; as R = k[2] is a UFD, C is the zero-set of an
irreducible element p ∈ R; as p /∈ k and p ∈ R ⊆ B = k[2], it follows that p is a
non-unit element of B; so there exists a maximal ideal m of B such that p ∈ m ∩ R,
which means that some closed point of SpecB is mapped to a closed point of C. So
(31) is true. As the image of SpecB → SpecR is included in that of SpecB0 → SpecR
(because R ⊆ B0 ⊆ B), which is (by surjectivity of π) equal to that of fR, we conclude
that

each curve in SpecR meets the image of fR.

So q0(fR) = 0, where q0 is defined in [CND14, 2.2]. By [Dai91, 1.3], it follows that

n(fR) + n(gR) = n(gR ◦ fR).

As gR ◦ fR = h,

(32) n(gR) ≤ n(h), for all R ∈ R∗(A,B).
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Also note that

(33) if R′ ⊂ R′′ is a strict inclusion where R′, R′′ ∈ R∗(A,B), then n(gR′) < n(gR′′).

Indeed,

SpecR′′

gR′′

++
u
// SpecR′ gR′

// SpecA

so n(gR′′) = n(gR′ ◦ u) = n(gR′) + n(u) by [CND14, 2.5], and n(u) > 0 by [CND14,
2.6(b)] and R′ 6= R′′. So (33) is true. By (32) and (33), we obtain that any chain of
strict inclusions R0 ⊂ R1 ⊂ · · · ⊂ Rs of elements of R∗(A,B) satisfies s ≤ n(h). �

5.2. Proposition. Let k be a field and A = k[2].

(a) Let R−(A) =
{
R | k ⊂ R ⊆ A and R = k[2]

}
. Then the poset

(
R−(A),⊆

)
satisfies ACC.

(b) Let Ω be an algebraic closure of FracA and define

R+(A) =
{
R | A ⊆ R ⊆ Ω and R = k[2]

}
.

Then the poset
(
R+(A),⊆

)
satisfies DCC.

Proof. If R+(A) does not satisfy DCC then there exists an infinite strictly decreasing
sequence R0 ⊃ R1 ⊃ R2 ⊃ · · · of elements of R+(A). Then Prop. 4.5 implies that
trdegk(R∗) ≤ 1, where we define R∗ =

⋂
i∈NRi. This is absurd, since A ⊆ R∗. So

R+(A) satisfies DCC.

Next, let R0 ⊆ R1 ⊆ R2 ⊆ · · · be an increasing sequence of elements of R−(A), and
let us prove that it stabilizes. Clearly,

(
FracRi

)
i∈N stabilizes, because FracA is a finite

extension of FracR0. So there exists i0 ∈ N such that FracRi = FracRi0 for all i ≥ i0.
Observe that

(
Ri

)
i≥i0

is a sequence in R∗(Ri0 , A), where

R∗(Ri0 , A) =
{
R′ | Ri0 ⊆ R′ ⊆ A, R′ = k[2] and FracR′ = FracRi0

}
.

By L. 5.1, R∗(Ri0 , A) satisfies a condition stronger than ACC; so
(
Ri

)
i≥i0

stabilizes

and so does
(
Ri

)
i∈N. This proves the proposition. �

5.3. Definition. Let (X,≤) be a poset. A saturated chain in X is a finite sequence
x0 < x1 < · · · < xn of elements of X such that, for each i ∈ {1, . . . , n}, no element
s ∈ X satisfies xi−1 < s < xi. A maximal chain in X is a saturated chain x0 < · · · < xn
in X such that no element s ∈ X satisfies s < x0 or xn < s. The natural number n is
called the length of the chain x0 < · · · < xn.

5.4. Remark. Let (X,≤) be a poset satisfying ACC and DCC. Then it is easy to see
that, given any a, b ∈ X be such that a ≤ b, there exists a saturated chain x0 < · · · < xn
in X satisfying x0 = a and xn = b. However, the pair (a, b) being fixed, the set{

n ∈ N | ∃ a saturated chain x0 < · · · < xn s.t. x0 = a and xn = b
}

is not necessarily bounded.
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5.5. Remark. Any poset (X,≤) satisfying ACC and DCC has at least one maximal
chain. Indeed, we may choose a, b ∈ X such that a ≤ b, a is a minimal element of
X and b is a maximal element of X. By Rem. 5.4, there exists a saturated chain
x0 < · · · < xn in X satisfying x0 = a and xn = b. This is a maximal chain in X.

5.6. Theorem. Let k be a field, let A ⊆ B be such that A = k[2] and B = k[2], and let

R(A,B) =
{
R | A ⊆ R ⊆ B and R = k[2]

}
.

(a) The poset (R(A,B),⊆) satisfies ACC and DCC.
(b) There exists a maximal chain in R(A,B).

Remark. A maximal chain in R(A,B) is the same thing as a saturated chain R0 ⊂
R1 ⊂ · · · ⊂ Rn in R(A,B) satisfying R0 = A and Rn = B.

Proof of Thm 5.6. Since R(A,B) ⊆ R−(B) and R(A,B) ⊆ R+(A), assertion (a) follows
from Prop. 5.2. Assertion (b) follows from (a) and Rem. 5.5. �

5.7. Remark. The setup being as in Thm 5.6, we note:

(1) By Ex. 5.9, R(A,B) is not necessarily a finite set.
(2) By Thm 5.6, R(A,B) has at least one maximal chain.
(3) By Ex. 6.3, R(A,B) may have maximal chains of different lengths.
(4) We don’t know if the lengths of maximal chains in R(A,B) are bounded.

5.8. Remark. Let k be a field, let A ⊆ B be such that A = k[2] and B = k[2], and let
L be a field such that FracA ⊆ L ⊆ FracB. Define

RL(A,B) =
{
R | A ⊆ R ⊆ B, R = k[2], and FracR = L

}
.

Then consider the following question:

Given A, B and L as above, does there exist N ∈ N such that all chains of
strict inclusions R0 ⊂ R1 ⊂ · · · ⊂ Rs of elements of RL(A,B) satisfy s ≤ N?

By L. 5.1, the answer is affirmative in the special case L = FracA. However, we
don’t know the answer in the general case. Let us observe that if the answer is always
affirmative then we can settle part (4) of Rem. 5.7. Indeed, we claim:

Let k be a field of characteristic zero and let A ⊆ B be such that A = k[2] and
B = k[2]. Suppose that for each field L such that FracA ⊆ L ⊆ FracB, there
exists NL ∈ N such that all chains of strict inclusions R0 ⊂ R1 ⊂ · · · ⊂ Rs of
elements of RL(A,B) satisfy s ≤ NL. Then the lengths of maximal chains in
R(A,B) are bounded.

To see this, consider the set F of fields L such that FracA ⊆ L ⊆ FracB. Since
char k = 0, FracB is a finite separable extension of FracA, so F is a finite set. Then
it is not hard to see that every chain R0 ⊂ R1 ⊂ · · · ⊂ Rs in R(A,B) satisfies
s <

∑
L∈F(NL + 1).

5.9. Example. Assume that char k = p > 0 and consider B = k[x, y] = k[2] and
A = k[xp, yp] = k[2]. Then R(A,B) is an infinite set. Indeed, n 7→ k[xp, y + xp

n+1] is
an injective map from N to R(A,B), and λ 7→ k[xp, y+ λx] is an injective map from k
to R(A,B). Furthermore, the main result of [Dai93] (or of [Gan82] if k is algebraically
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closed) implies that R(A,B) = {A,B} ∪
{

k[up, v] | (u, v) ∈ B2 is s.t. B = k[u, v]
}

.
This description of R(A,B) implies that every maximal chain R0 ⊂ R1 ⊂ · · · ⊂ Rn in
R(A,B) satisfies n = 2.

5.10. Definition. Let k be a field, R = k[2] and F ∈ R. We say that F is univariate
in R if there exist X, Y such that R = k[X, Y ] and F ∈ k[X].

5.11. Theorem. Let k be a field, A = k[2], F ∈ A \ k and

U(A,F ) =
{
R | R = k[2], F ∈ R ⊆ A and F is not univariate in R

}
.

Then
(
U(A,F ),⊆

)
satisfies ACC. If char k = 0, then it also satisfies DCC.

Proof. ACC follows from Prop. 5.2 and U(A,F ) ⊆ R−(A); DCC (if char k = 0) follows
from Thm 4.15. �

It is interesting to note the following variant of Thm 5.11, valid over an arbitrary
field k:

5.12. Theorem. Let k be a field, A = k[2], F ∈ A \ k and

U∗(A,F ) =
{
R ∈ U(A,F ) | FracR = FracA

}
.

Then
(
U∗(A,F ),⊆

)
satisfies ACC and DCC.

Proof. Since U∗(A,F ) ⊆ U(A,F ) and U(A,F ) satisfies ACC by Thm 5.11, U∗(A,F )
satisfies ACC. By Thm 1.1(i), U∗(A,F ) satisfies DCC. �

5.13. Some examples. We conclude this section with some examples of minimal
elements of U(A,F ). In L. 5.13.1 and Ex. 5.13.2, k is an algebraically closed field of
characteristic zero.

5.13.1. Lemma. Let A = k[x, y] = k[2]. Then U(A,F ) = {A} in each of the following
cases:

(a) F = xy;
(b) F = x2 + y3.

Proof. In both cases (a) and (b), it is clear that A ∈ U(A,F ). Consider any R = k[2]

such that F ∈ R ⊂ A (where “⊂” is strict); to prove the claim, we have to show that
F is a variable of R.

Let h : SpecA→ SpecR be the morphism determined by the inclusion R ↪→ A.
For each λ ∈ k such that F −λ is irreducible in A (and hence in R), let CA

λ ⊂ SpecA
be the curve “F = λ” in SpecA, and let CR

λ ⊂ SpecR be the curve “F = λ” in SpecR
(both are irreducible curves). Note that these curves are defined for all λ ∈ k∗ in case
(a), and for all λ ∈ k in case (b).

Consider case (a). Since h is a dominant morphism, there are at most finitely many
λ ∈ k∗ such that h(CA

λ ) is a point. So, for general λ ∈ k∗, we have a dominant
morphism CA

λ → CR
λ ; since CA

λ is a rational curve, it follows that CR
λ is rational (for

general λ). Thus F is a generally rational polynomial in R (and hence a field generator
in R, cf. Rem. 4.11). We noted that F − λ is irreducible in R for each λ ∈ k∗, but in
fact it is irreducible in R also when λ = 0 (otherwise x, y ∈ R contradicts R 6= A). It
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follows from L. 4.12 that dic(F,R) = 1, so F is a field generator of R with only one
dicritical; as explained in the last sentence of the proof of Thm 4.15, it follows that F
is a variable of R.

Case (b). Suppose that h is birational. Since h is not an isomorphism (because
R 6= A), [CND14, L. 2.6(b)] implies that there exists a curve C ⊂ SpecA such that h(C)
is a point. By statement (4) in paragraph 2.3 of [CND14], the curve C is nonsingular
and rational. On the other hand, C must be included in (and hence equal to) CA

λ for
some λ ∈ k; this is impossible because there are no values of λ such that CA

λ is both
nonsingular and rational. This shows that h is not birational.

It follows that, for general λ ∈ k, h restricts to a morphism hλ : CA
λ → CR

λ that
is dominant but not birational (hence not purely inseparable); since g(CA

λ ) = 1 and
n∞(CA

λ ) = 1, L. 4.9 implies that n∞(CR
λ ) = 1 and that either g(CA

λ ) > g(CR
λ ) (in which

case CR
λ is rational) or g(CA

λ ) = 0 = g(CR
λ ) (which cannot happen); so CR

λ is rational
and has one place at infinity (for general λ). Thus F is a generally rational polynomial
(hence a field generator) in R, with one place at infinity; so F is a variable of R. �

In the following example U(A,F ) has several minimal elements (R and R′) and F has
a completely different “personality” depending on whether it is viewed as an element
of R or of R′.

5.13.2. Example. Let A = k[x, y] = k[2] and F = x2 + x3y3 ∈ A. Then R = k[x, xy]
and R′ = k[x2, xy3] are distinct minimal elements of U(A,F ). Moreover, F is a field
generator of R′ but not of R.

Indeed, let w = xy; then R = k[x,w] and F = x2 + w3, so L. 5.13.1 implies that
U(R,F ) = {R}. With u = x2 and v = 1 + xy3 we have R′ = k[u, v] and F = uv, so L.
5.13.1 implies that U(R′, F ) = {R′}. So R,R′ are minimal elements of U(A,F ), and it
is clear that F is a field generator of R′ but not of R.

6. Two applications

We fix an arbitrary field k throughout this section. We write An for the affine n-
space over k, i.e., An = SpecA where A = k[n]. See the introduction for the notations
Mor(X, Y ), Dom(X), Bir(X), and Aut(X).

This section is in two parts. The first one, very short, contains a few remarks about
the monoid Dom(A2) of dominant endomorphisms of A2. The second part is concerned
with lean factorizations of dominant morphisms A2 → An, n ∈ {1, 2}.

The monoid Dom(A2).

6.1. Definition. Let M be a multiplicative monoid with identity element denoted 1.
An element u of M is invertible if there exists v ∈ M satisfying uv = 1 = vu. An
element p of M is irreducible if it is not invertible and for each factorization p = xy
with x, y ∈ M , at least one of x, y is invertible. The monoid M is atomic if each non
invertible element of M is a finite product of irreducible elements.

We have Aut(A2) ⊆ Bir(A2) ⊆ Dom(A2). It is known that the monoid Bir(A2) is
cancellative and atomic (cancellation is trivial, atomicity is implicit in [Dai91], explicit
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in [CND14], [CND15a]); more results about the structure of Bir(A2) can be found in
[CND14], [CND15a].

The results of the present paper allow us to say something about Dom(A2):

6.2. Corollary. The monoid Dom(A2) is atomic.

Proof. Trivial consequence of Thm 5.6(b). �

Remark. The monoid Mor(A2,A2) is not atomic, and Dom(A2) is a submonoid of it.

As noted in the introduction, it is known that Dom(A1) is atomic and that factoriza-
tions into irreducibles (in Dom(A1)) have certain uniqueness properties. One of these
properties is the fact that any two irreducible factorizations of a given noninvertible
element have the same number of factors (see [Rit22]). This does not hold for Dom(A2):

6.3. Example. Define f, g ∈ Dom(A2) by

A2 f−−→ A2

(x, y) 7→ (x2, y)
and

A2 g−−→ A2

(x, y) 7→ (x, xy).

Then it is easy to see that f and g are irreducible elements of Dom(A2), and that
g ◦ f = f ◦ g ◦ g.

Since we mentioned that Bir(A2) is cancellative, it is perhaps not superfluous to
point out that Dom(A2) is not. The reader may verify the following claim:

For each n ≥ 1, the monoid Dom(An) is right-cancellative but not left-cancellative.

Lean factorizations. See the introduction for the definitions of lean morphism and
lean factorization, and for an explanation of why these notions are relevant. Our aim,
here, is to study lean factorizations of dominant morphisms A2

k → An
k (n = 1, 2). We

give two results, Thms 6.5 and 6.7.

6.4. Remarks. Assume that k is algebraically closed.

(1) If a morphism f : A2 → A1 is not lean, then there exists a nonsingular rational
curve C ⊂ A2 such that f(C) is a point.

(2) If a dominant morphism f : A2 → A2 is not lean, then there exists a nonsingular
rational curve C ⊂ A2 such that f(C) is a point, or a rational curve C ⊂ A2

with one place at infinity such that C ∩ f(A2) is a finite set.

Indeed, consider (2) for instance. Since f is not lean there exists a factorization A2 α−→
A2 → A2 β−→ A2 of f with α, β ∈ Bir(A2) and {α, β} * Aut(A2). If α /∈ Aut(A2) then
Cont(α) 6= ∅, and any C ∈ Cont(α) is a nonsingular rational curve C ⊂ A2 such that
f(C) is a point; if β /∈ Aut(A2) then Miss(β) 6= ∅, and any C ∈ Miss(β) is a rational
curve C ⊂ A2 with one place at infinity such that C ∩ f(A2) is a finite set.

6.5. Theorem. Every dominant morphism A2 → A2 has a lean factorization.
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Proof. Let f : A2 → A2 be a dominant morphism. Let us view f as the morphism
f : SpecA → SpecR determined by an inclusion of rings A ←↩ R, where A = k[2] and
R = k[2]. The pair R ⊆ A determines the set of rings

A =
{
A′ | A ⊇ A′ ⊇ R, A′ = k[2], and FracA′ = FracA

}
.

With notation as in Prop. 5.2, we have A ⊆ R+(R), so (by that result) A satisfies
DCC. Choose a minimal element A′ of A and consider the set of rings

R =
{
R′ | A′ ⊇ R′ ⊇ R, R′ = k[2], and FracR′ = FracR

}
.

Then R ⊆ R−(A′), so R satisfies ACC by Prop. 5.2. Choose a maximal element R′ of
R. Then we have inclusions A←↩ A′ ←↩ R′ ←↩ R and the corresponding morphisms

SpecA
α−→ SpecA′

f ′−→ SpecR′
β−→ SpecR

constitute a lean factorization of f . �

We shall now discuss lean factorizations of morphisms A2 → A1. See Def. 2.4.2 for
the notion of very good field generator.

6.6. Remark. Because Bir(A1) = Aut(A1), the definitions of lean morphism and lean
factorization (for dominant morphisms A2 → A1) simplify as follows. Let f : A2 → A1

be a dominant morphism. We say that f is lean if for every diagram A2 α−→ A2 f ′−→ A1

satisfying f = f ′ ◦ α, α ∈ Bir(A2) and f ′ ∈ Mor(A2,A1), one has α ∈ Aut(A2). By a

lean factorization of f , we mean a diagram A2 α−→ A2 f ′−→ A1 such that f = f ′ ◦ α, with
α ∈ Bir(A2) and f ′ a lean morphism.

6.7. Theorem. Let A = k[2], let F ∈ A \ k, and consider the morphism f : A2 → A1

determined by the inclusion homomorphism k[F ] ↪→ A. The following are equivalent:

(a) f does not have a lean factorization;
(b) there exists a very good field generator G of A such that F ∈ k[G].

Proof. For any H ∈ K = FracA, define A(A,H) =
{
R | H ∈ R � A

}
(see 2.4.1 for

the notation �). Observe that f has a lean factorization if and only if A(A,F ) has a
minimal element. Also,

(34) for every H ∈ K satisfying F ∈ k[H], A(A,H) = A(A,F ).

Indeed, consider R satisfying R � A. If F ∈ R then H is integral over the subring k[F ]
of R, so H ∈ R (because H ∈ FracR and R = k[2] is normal). Conversely, if H ∈ R
then F ∈ k[H] ⊆ R implies F ∈ R. So (34) is true.

Suppose that f does not have a lean factorization. It is shown in the proof of L. 3.21
that the set

{
k[H] | H ∈ K

}
satisfies ACC. So we may consider a maximal element

k[G] of the set ΣF =
{

k[H] | H ∈ K and F ∈ k[H]
}

. Then k[F ] ⊆ k[G] and, by (34),
A(A,G) = A(A,F ). Let us show that G is a very good field generator of A. Consider
an A′ satisfying G ∈ A′ � A. Since A′ ∈ A(A,G) = A(A,F ) and A(A,F ) does not
have a minimal element (because f does not have a lean factorization), there exists
an infinite strictly descending sequence A′ = A0 ⊃ A1 ⊃ A2 ⊃ · · · with Ai ∈ A(A,F )
for all i. By Thm 3.3, there exists a good field generator H of A0 = A′ such that
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i=0Ai = k[H]. Since A(A,F ) = A(A,G), we have k[G] ⊆

⋂∞
i=0Ai = k[H], so

k[G] = k[H] by maximality of k[G] ∈ ΣF , so G is a good field generator of A0 = A′.
This shows that G is a very good field generator of A, so (a) implies (b).

Conversely, suppose that there exists a very good field generator G of A such that
F ∈ k[G]. Consider R ∈ A(A,F ). We have A(A,G) = A(A,F ) by (34), so G ∈ R � A
and hence G is a good field generator of R. So there exists H such that k[G,H] ⊆ R
and k(G,H) = K. Then k[G,GH] belongs to A(A,F ) and is strictly included in R,
showing that R is not a minimal element of A(A,F ). So A(A,F ) does not have a
minimal element, which implies that f does not have a lean factorization. Hence, (b)
implies (a). �
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[Zar54] O. Zariski. Interprétations algébro-géométriques du quatorzième problème de Hilbert. Bull.

Sci. Math., 78:155–168, 1954.
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