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Abstract. Let A be a geometrically integral algebra over a field k. We prove that for any affine

k-domain R, if there exists an extension field K of k such that R ⊆ K ⊗k A and R * K, then

there exists an extension field L of k such that R ⊆ L ⊗k A and trdegk(L) < trdegk(R). This

generalizes a result of Freudenburg, namely, the fact that this is true for A = k[1].

1. Introduction

Recall that by a domain, one means an integral domain. If k is a field, then a k-domain is a
domain that is also a k-algebra, and an affine k-domain is a domain that is a finitely generated
k-algebra.

Let k be a field and consider k-domains R and A. An A-embedding of R is a pair (K, f) where K
is an extension field of k and f : R→ K ⊗k A is an injective k-homomorphism. An A-embedding
(K, f) of R is trivial if f factors through the canonical homomorphism K → K ⊗k A; (K, f) is
small if trdegk(K) < trdegk(R). Observe that all small A-embeddings of R are nontrivial.

It is clear that given any field k and any k-domains R and A, there exists a trivial A-embedding
of R: let K be the field of fractions of R, then R→ K → K ⊗k A is a trivial A-embedding of R.
However, there may or may not exist a nontrivial A-embedding of R. If there exists a nontrivial
(resp. small) A-embedding of R, we say that R admits a nontrivial (resp. small) A-embedding.

1.1. Definition. Let k be a field. We say that a k-domain A has the small embedding property if
every affine k-domain that admits a nontrivial A-embedding also admits a small A-embedding.

We abbreviate “A has the small embedding property” to “A has property (SE)”. If we want to
emphasize k, we say “A has property (SE) over k”.

Remark. Let us rephrase the definition of property (SE) in more concrete terms. Let k be a field
and A a k-domain. Then A has property (SE) over k if and only if for every field extension K/k
and every affine k-domain R such that R ⊆ K ⊗k A and R * µK(K) (where µK : K → K ⊗k A is
the canonical map), there exists a pair (L, f) where L/k is a field extension satisfying trdegk(L) <
trdegk(R) and f : R→ L⊗k A is an injective k-homomorphism.

Keeping in mind the above definition, consider the following result of Freudenburg (the main
result of [Fre15]):

Let R be a finitely generated algebra over a field k. Suppose that there exists a field
extension K/k and an element x transcendental over K such that R ⊆ K[x] and
R * K. Then there exists a field extension L/k and an element y transcendental
over L such that R ⊆ L[y] and L[y] is algebraic over R.

Clearly, Freudenburg’s result is equivalent to the statement: for any field k, the polynomial ring
k[X] has property (SE) over k. In the same paper, Freudenburg asks whether the analogue of
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his result holds for Laurent polynomial rings. This is equivalent to asking: does k[X,X−1] have
property (SE) over k?

In this paper we partially solve the problem of describing the class of domains having property
(SE). Let us recall:

1.2. Definition. Let k be a field. A k-algebra A is geometrically integral over k if, for every field
extension K/k, the ring K ⊗k A is a domain.

Then our main result is:

1.3. Theorem. Let k be a field and A a k-domain that is geometrically integral over k. Then A
has property (SE) over k.

The proof is given in Section 2. It follows in particular that if k is a field and n ≥ 1 then the
polynomial ring k[x1, . . . , xn] and the Laurent polynomial ring k[x±1

1 , . . . , x±1
n ] have property (SE).

Setting n = 1, we recover Freudenburg’s result and we give an affirmative answer to his question.

Note that if k is algebraically closed then every k-domain is geometrically integral. Thus:

1.4. Corollary. If k is an algebraically closed field then every k-domain has property (SE).

1.5. Remark. If k is not algebraically closed then there exist k-domains that do not have property
(SE). For instance, if A/k is an algebraic field extension such that A 6= k then A does not have
property (SE) over k. (Proof: Let x be an indeterminate over k, and note that k(x) ⊗k A can
be identified with A(x). Let a ∈ A \ k and let R = k[x + a]. Then R ⊆ A(x) = k(x) ⊗k A is a
nontrivial A-embedding of R but R does not admit a small A-embedding.)

1.6. Remark. Let k be a field and consider k-domains R and A. We say that R is A-refractory
if all A-embeddings of R are trivial. Theorem 1.3 provides us with a useful criterion for deciding
whether a given k-domain R is A-refractory. The criterion is particularly manageable when R has
transcendence degree 1:

Let R be a 1-dimensional affine k-domain and A a geometrically integral k-domain.
Then R is A-refractory if and only if there does not exist an injective k-homomorphism
R→ k̄ ⊗k A, where k̄ is the algebraic closure of k.

This follows from the fact that (by Thm 1.3) A has property (SE) over k.

1.7. Remark. We thank Gene Freudenburg for reminding us that Lemma 14 in Makar-Limanov’s
lecture notes [ML] is essentially the same as the following statement, which is related to the subject
matter of this article: Let R be a C-domain with trdegC(R) = 1. If there exists a field extension
K/C and an element x transcendental over K such that R ⊆ K[x] and R * K, then R is C-affine
and there exists an injective C-homomorphism R→ C[x].

1.8. Remark (Small embeddings of fields). As indicated by the title of [Fre15], the result of
Freudenburg stated above is an affine version of a result of Nagata about fields. That result of
Nagata is Thm 2 of [Nag67], which we state here in a slightly different formulation:

(∗) Let E and K be two field extensions of a field k and let x be a transcendental element
over K. Assume that K/k is finitely generated, that E ⊆ K(x) and that E * K. Then
there exists an extension L/k and a transcendental element y over L such that E ⊆ L(y)
and L(y) is algebraic over E.

One can define a “small embedding property for fields” (SEF) as follows. First, if K ⊗k A is
a domain then we write K ~k A for the field of fractions of K ⊗k A. Then let us say that a
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geometrically integral field extension A/k has property (SEF) if for every field extension K/k and
every finitely generated field extension E/k such that E ⊆ K~kA and E * K, there exists a field
extension L/k such that E ⊆ L~k A and trdegk(L) < trdegk(E). With this definition, Nagata’s
result (∗) is equivalent to the statement that, for any field k, if x is transcendental over k then
k(x)/k has property (SEF) (to see this equivalence, one has to see that the statement obtained
from (∗) by replacing the assumption “K/k is finitely generated” by “E/k is finitely generated”
is actually equivalent to (∗)).

It would be interesting to ask for a description of the class of field extensions that have property
(SEF). In this regard, we note that it is not hard to obtain, as a corollary to Nagata’s result, that
every unirational field extension has property (SEF).

Conventions. All rings are commutative and have a unity 1. If B is an algebra over a ring A,
the notation B = A[n] means that B is isomorphic (as an A-algebra) to a polynomial ring in n
variables over A. If L/K is a field extension, L = K(n) means that L is a purely transcendental
extension of K of transcendence degree n. If A is a ring then A∗ is the set of units of A. If A is a
domain then Frac(A) is its field of fractions. We write “trdeg” for transcendence degree, “\” for
set difference, and we adopt the convention that 0 ∈ N.

2. Proof of Theorem 1.3

Our proof is inspired by that of [Fre15, Thm 2.1], and we also borrow some of the notations
from that source. However, the ideas of [Fre15] have to be significantly elaborated in order to be
applied to the present setting.

2.1. Definitions. Let A be a ring and (G,+,≤) a totally ordered abelian group. Given a formal
sum f =

∑
i∈G ait

i where ai ∈ A for all i ∈ G, define supp(f) =
{
i ∈ G | ai 6= 0

}
. Then let

A〈〈G〉〉 be the set of all formal sums f =
∑

i∈G ait
i such that ai ∈ A for all i ∈ G and such that

supp(f) is a well-ordered subset of G. Then one can add and multiply elements of A〈〈G〉〉 as if
they were power series, and it is straightforward to check that A〈〈G〉〉 is a ring. It is sometimes
called a ring of “long power series”.

Given a ∈ A and j ∈ G, define the element atj ∈ A〈〈G〉〉 by atj =
∑

i∈G αit
i with αj = a and

αi = 0 for all i ∈ G \ {j}. Then 1t0 is the element 1 of the ring A〈〈G〉〉 and the map a 7→ at0 is an
injective ring homomorphism A→ A〈〈G〉〉. Given f =

∑
i∈G ait

i ∈ A〈〈G〉〉, we define

ord(f) =

{
min supp(f) if f 6= 0,

∞ if f = 0,
f̄ =

{
art

r where r = ord(f) if f 6= 0,

0 if f = 0.

This defines two maps,

A〈〈G〉〉 → G ∪ {∞}
f 7→ ord(f)

A〈〈G〉〉 → A〈〈G〉〉
f 7→ f̄

.

We shall say that an element f of A〈〈G〉〉 is homogeneous if f = f̄ .

Remark. For any ring A we have A〈〈Z〉〉 = A((t)), the ring of formal Laurent series over A. If k is
a field and G a totally ordered abelian group, then k〈〈G〉〉 is a field and ord : k〈〈G〉〉 → G ∪ {∞}
is a valuation.

2.2. Lemma. Let G be a totally ordered abelian group, K/k a field extension, R a k-subalgebra of
K〈〈G〉〉 and R̄ = k[

{
r̄ | r ∈ R

}
]. If trdegk R <∞, then trdegk R̄ ≤ trdegk R.
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Proof. Let S =
{
r̄ | r ∈ R \ {0}

}
. Since R̄ = k[S], there exists a subset of S which is a

transcendence basis of Frac(R̄) over k. So, to prove the claim, it’s enough to show that given any
integer n > trdegk(R), every family (s1, . . . , sn) ∈ Sn is algebraically dependent over k.

Let n > trdegk(R) and (s1, . . . , sn) ∈ Sn. Choose (r1, . . . , rn) ∈ Rn such that r̄i = si for
all i = 1, . . . , n. Then there exists a polynomial F (x1, . . . , xn) ∈ k[x1, . . . , xn] \ {0} such that
F (r1, . . . , rn) = 0. Define a G-grading, k[x1, . . . , xn] = ⊕

d∈G
Bd, by declaring that k ⊆ B0 and

that xi ∈ Bord(ri) for all i = 1, . . . , n. Let H(x1, . . . , xn) 6= 0 be the homogeneous component
of F (x1, . . . , xn) of smallest degree.1 Then H(s1, . . . , sn) = 0, showing that (s1, . . . , sn) is alge-
braically dependent over k. Thus trdegk R̄ ≤ trdegk R. �

2.3. Lemma. Let K/k be a field extension and let R be a k-subalgebra of K〈〈Zn〉〉, where n ≥ 1 and
where Zn is endowed with some total order. Assume that R * K and that R = k[S] for some set
S of homogeneous elements of K〈〈Zn〉〉, and let L = Frac(R)∩K. Then there exist m ∈ {1, . . . , n}
and elements c1, . . . , cm ∈ K∗ and d1, . . . , dm ∈ Zn such that d1, . . . , dm are linearly independent
over Z and

R ⊆ L[(c1t
d1)±1, . . . , (cmt

dm)±1] ⊆ Frac(R).

Moreover, we have Frac(R) = L(m) and consequently trdegL(FracR) = m ≥ 1.

Proof. Let H be the subgroup of Zn generated by the set
{

ord(s) | s ∈ S \ {0}
}

. Since
k[S] = R * K, H is not the trivial group, so H ∼= Zm for some m ∈ {1, . . . , n}. Let {d1, . . . , dm}
be a basis of H. For each i ∈ {1, . . . ,m}, there exist si1, . . . , sini

∈ S and ei1, . . . , eini
∈ Z such

that ord(sei1i1 · · · s
eini
ini

) = di. Then sei1i1 · · · s
eini
ini

= cit
di for some ci ∈ K∗, and clearly cit

di ∈ Frac(R).
As L ⊆ Frac(R), this shows that

L[(c1t
d1)±1, . . . , (cmt

dm)±1] ⊆ Frac(R).

Let s ∈ S \ {0}. Then ord(s) = a1d1 + · · · + amdm for some a1, . . . , am ∈ Z, so ord(s) =
ord
(
(c1t

d1)a1 · · · (cmtdm)am
)
, so

s

(c1td1)a1 · · · (cmtdm)am
∈ Frac(R) ∩K∗ = L∗.

It then follows that s ∈ L[(c1t
d1)±1, . . . , (cmt

dm)±1], so R ⊆ L[(c1t
d1)±1, . . . , (cmt

dm)±1].
Since d1, . . . , dm are linearly independent over Z, the family (c1t

d1 , . . . , cmt
dm) is algebraically

independent over K, hence algebraically independent over L because L ⊆ K. It follows that
Frac(R) = L(c1t

d1 , . . . , cmt
dm) = L(m). �

2.4. Lemma. Let k be a field, B a k-algebra and G a totally ordered abelian group. Then there is
an injective B-homomorphism B⊗k k〈〈G〉〉 → B〈〈G〉〉 given by b⊗

∑
i∈G ait

i 7→
∑

i∈G(aib)t
i, where

b ∈ B and
∑

i∈G ait
i ∈ k〈〈G〉〉.

Proof. Applying the universal property of B ⊗k k〈〈G〉〉 (i.e., the pushout property) to the natural
homomorphisms B → B〈〈G〉〉 ← k〈〈G〉〉 shows that there exists a ring homomorphism

θ : B ⊗k k〈〈G〉〉 → B〈〈G〉〉
satisfying θ(b ⊗

∑
i ait

i) =
∑

i(aib)t
i for all b ∈ B and

∑
i ait

i ∈ k〈〈G〉〉. It is clear that θ is a
B-homomorphism, so our task is to show that θ is injective. Let x ∈ ker θ. Let (ej)j∈J be a basis

1Consider the unique decomposition F (x1, . . . , xn) = Fd1
(x1, . . . , xn)+ · · ·+Fdr

(x1, . . . , xn) where d1 < · · · < dr
are elements of G and Fd(x1, . . . , xn) ∈ Bd \ {0} for all d. Then the polynomials Fdi

(x1, . . . , xn) are called the

homogeneous components of F (x1, . . . , xn), and H(x1, . . . , xn) = Fd1
(x1, . . . , xn) is the one of smallest degree.
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of B over k and note that (ej ⊗ 1)j∈J is a basis of B ⊗k k〈〈G〉〉 over k〈〈G〉〉. So x =
∑

j∈J0 ej ⊗ fj
where J0 is a finite subset of J and fj =

∑
i∈G aijt

i ∈ k〈〈G〉〉 for all j ∈ J0 (aij ∈ k). Then

0 = θ(x) =
∑
j∈J0

θ(ej ⊗
∑
i∈G

aijt
i) =

∑
j∈J0

∑
i∈G

aijejt
i =

∑
i∈G

(
∑
j∈J0

aijej)t
i

so
∑

j∈J0 aijej = 0 for each i ∈ G, so aij = 0 for all i, j and hence x = 0. �

2.5. Notation. Let k be a field, let B and A be k-algebras, and let ϕ : A→ k〈〈G〉〉 be an injective
k-homomorphism where G is a totally ordered abelian group. We define

ΘB
ϕ : B ⊗k A→ B〈〈G〉〉

to be the composition B ⊗k A
B⊗ϕ−−−→ B ⊗k k〈〈G〉〉 → B〈〈G〉〉, where B ⊗k k〈〈G〉〉 → B〈〈G〉〉 is the

map of Lemma 2.4. Note that ΘB
ϕ is an injective B-homomorphism. It is given explicitly by the

following rule: if b ∈ B, x ∈ A and ϕ(x) =
∑

i∈G ait
i, then ΘB

ϕ (b⊗x) =
∑

i∈G(aib)t
i. We may also

write this rule as ΘB
ϕ (b⊗ x) = bϕ(x), because ϕ(x) ∈ k〈〈G〉〉 ⊆ B〈〈G〉〉 and B〈〈G〉〉 is a B-algebra.

2.6. Lemma. Let k be a field, A a k-algebra, and ϕ : A → k〈〈G〉〉 an injective k-homomorphism
where G is a totally ordered abelian group. Let B be a k-algebra and K a field that contains B.
Consider the commutative diagram

K ⊗k A
ΘK

ϕ // K〈〈G〉〉

B ⊗k A
ΘB

ϕ

//

OO

B〈〈G〉〉

OO

.

Then (ΘK
ϕ )−1

(
B〈〈G〉〉

)
= B ⊗k A.

Proof. Let ξ ∈ (K ⊗k A) \ {0}. Write ξ = u1 ⊗ α1 + · · · + un ⊗ αn where ui ∈ K, αi ∈ A, and
where α1, . . . , αn are linearly independent over k. Then the elements ϕ(α1), . . . , ϕ(αn) of k〈〈G〉〉
are linearly independent over k. For each j = 1, . . . , n, write ϕ(αj) =

∑
i∈G cijt

i (cij ∈ k). By
linear independence, we may choose a finite subset {i1, . . . , im} of G such that the rank of the

matrix C =

(
ci11 ··· ci1n
...

...
cim1 ··· cimn

)
is equal to n. Then the K-linear map

Φ : Kn → Km,

( x1
...
xn

)
7→ C

( x1
...
xn

)
is injective and we claim that

(1) Φ−1(Bm) = Bn.

To see this, note that B is a subspace of the k-linear space K, so K = B ⊕ V for some subspace
V of K. Now Kn = Bn ⊕ V n as k-vector spaces, and the fact that C is a matrix over k implies
that Φ(Bn) ⊆ Bm and Φ(V n) ⊆ V m. Suppose that b + v ∈ Φ−1(Bm) where b ∈ Bn and v ∈ V n.
Then Φ(b) + Φ(v) = Φ(b+ v) ∈ Bm implies that Φ(v) = 0, so v = 0, so b+ v ∈ Bn, proving (1).

Consider ΘK
ϕ (ξ) ∈ K〈〈G〉〉. If we write ΘK

ϕ (ξ) =
∑

i∈G yit
i (yi ∈ K) then

Φ
(( u1

...
un

))
=

(
yi1
...

yim

)
.
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If we now assume that ΘK
ϕ (ξ) ∈ B〈〈G〉〉, we have Φ

(( u1
...
un

))
∈ Bm, so

( u1
...
un

)
∈ Bn by (1), so

ξ ∈ B ⊗k A. This shows that (ΘK
ϕ )−1

(
B〈〈G〉〉

)
= B ⊗k A, so the Lemma is proved. �

2.7. Definition. Let k be a field and G a totally ordered abelian group. We shall say that a
k-algebra A has enough embeddings in k〈〈G〉〉 if, for every field extension K/k and every element
ξ ∈ (K ⊗k A) \ K, there exists an injective k-homomorphism ϕ : A → k〈〈G〉〉 such that ΘK

ϕ :
K ⊗k A→ K〈〈G〉〉 maps ξ to an element of nonzero order.

2.8. Theorem. Let n ≥ 0, and let G denote Zn endowed with some total order. If k is a field and
A is a k-algebra that has enough embeddings in k〈〈G〉〉, then A has property (SE) over k.

Proof. If n = 0 then the fact that A has enough embeddings in k〈〈G〉〉 = k implies that A = k, in
which case it is clear that A has property (SE). From now-on, we assume that n ≥ 1.

Let A be a k-algebra that has enough embeddings in k〈〈G〉〉 = k〈〈Zn〉〉. Let K be a field extension
of k and let R be an affine k-domain satisfying R ⊆ K ⊗k A and R * K. It has to be shown that
there exists a field extension L of k such that R ⊆ L⊗k A and trdegk(L) < trdegk(R).

We may choose an element ξ ∈ R\K ⊆ (K⊗kA)\K; since A has enough embeddings in k〈〈Zn〉〉,
there exists an injective k-homomorphism ϕ : A → k〈〈Zn〉〉 such that ΘK

ϕ : K ⊗k A → K〈〈Zn〉〉
maps ξ to an element of nonzero order. Consider the k-subalgebra ΘK

ϕ (R) of K〈〈Zn〉〉 and define

R̄ = k[
{
ρ̄ | ρ ∈ ΘK

ϕ (R)
}

], which is a k-subalgebra of K〈〈Zn〉〉; then

(2) trdegk(R̄) ≤ trdegk
(
ΘK
ϕ (R)

)
= trdegk(R)

by Lemma 2.2. Since ΘK
ϕ (ξ) has nonzero order, we have R̄ * K. Let L′ = Frac(R̄) ∩ K.

Then Lemma 2.3 implies that there exist m ∈ {1, . . . , n} and elements c1, . . . , cm ∈ K∗ and
d1, . . . , dm ∈ Zn \ {0} such that d1, . . . , dm are linearly independent over Z and

R̄ ⊆ L′[(c1t
d1)±1, . . . , (cmt

dm)±1] ⊆ Frac(R̄).

Moreover, also by Lemma 2.3, Frac(R̄) is a transcendental extension of L′. So

(3) trdegk(L
′) < trdegk(R̄) ≤ trdegk(R),

where the second inequality follows from (2).
Consider w1, . . . , wN ∈ K ⊗k A such that R = k[w1, . . . , wN ]. For each i = 1, . . . , N , write

wi = ui1 ⊗ βi1 + · · · + uini
⊗ βini

with uij ∈ K and βij ∈ A. Let S be the finite subset of K
whose elements are c1, . . . , cm, 1

c1
, . . . , 1

cm
and all uij, and consider the subring B = L′[S] of K.

Note that B is an affine L′-domain. For each i, j we have ΘK
ϕ (uij ⊗ βij) = uijϕ(βij) ∈ B〈〈Zn〉〉;

so ΘK
ϕ (R) ⊆ B〈〈Zn〉〉 and hence R ⊆ (ΘK

ϕ )−1(B〈〈Zn〉〉) = B ⊗k A by Lemma 2.6. In other words,
there exists an injective k-homomorphism f : R→ B ⊗k A. As B 6= 0, we may choose a maximal
ideal m of B and consider the commutative diagram

(4) K ⊗k A //

ΘK
ϕ

,,
K ⊗k k〈〈Zn〉〉 // K〈〈Zn〉〉

R
f

// B ⊗k A
g
��

//
?�

OO

B ⊗k k〈〈Zn〉〉

��

//
?�

OO

B〈〈Zn〉〉

��

?�

OO

(B/m)⊗k A // (B/m)⊗k k〈〈Zn〉〉 // (B/m)〈〈Zn〉〉
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Note that all horizontal arrows in this diagram are injective k-homomorphisms. Let r ∈ R\{0} and
let ρ =

∑
i∈G bit

i (where G = Zn and bi ∈ B for all i) be the image of r in B〈〈Zn〉〉 via the maps of
diagram (4). As ρ is a nonzero element of ΘK

ϕ (R), we may consider ρ̄ ∈ R̄\{0}. Write θ = ord(ρ),

then ρ̄ = bθt
θ where bθ ∈ B \ {0}. Note that 0 6= bθt

θ ∈ R̄ ⊆ L′[(c1t
d1)±1, . . . , (cmt

dm)±1].
Consequently, bθt

θ is a finite sum of terms of the form

λ(c1t
d1)a1 · · · (cmtdm)am with λ ∈ (L′)∗ and a1, . . . , am ∈ Z.

By linear independence of d1, . . . , dm over Z, it follows that

bθt
θ = λ(c1t

d1)a1 · · · (cmtdm)am for some λ ∈ (L′)∗ and a1, . . . , am ∈ Z.

Then bθ = λca11 · · · camm ∈ B∗, so the image
∑

i∈G(bi+m)ti of r in (B/m)〈〈Zn〉〉 is nonzero. It follows
that (g ◦ f)(r) 6= 0, and this proves that g ◦ f : R→ (B/m)⊗kA is an injective k-homomorphism.

Write L = B/m, then R ⊆ L⊗k A. Since B is an affine L′-domain, L is a finite extension of L′.
So trdegk(L) = trdegk(L

′) < trdegk(R) by (3). �

2.9. Lemma. Let G be a totally ordered abelian group. Let A be an algebra over a field k and sup-
pose that A has enough embeddings in k〈〈G〉〉. Then every k-subalgebra of A has enough embeddings
in k〈〈G〉〉.

Proof. Let A0 be a k-subalgebra of A, let i : A0 → A be the inclusion map, let K/k be a field
extension and let µ0 : K → K ⊗k A0 and µ : K → K ⊗k A be the canonical maps. Note the
commutative diagrams (ignore ϕ and ΘK

ϕ for now):

K ⊗k A0
K⊗i // K ⊗k A

K

µ0

OO

µ

88 K ⊗k A0
K⊗i

//

ΘK
ϕ ◦(K⊗i)=ΘK

ϕ◦i

++
K ⊗k A

ΘK
ϕ

// K〈〈G〉〉

A0 i
//

OO

A ϕ
//

OO

k〈〈G〉〉

OO

Let ξ ∈ (K ⊗k A0) \ µ0(K). If (K ⊗ i)(ξ) ∈ µ(K) then there exists a ∈ K such that (K ⊗ i)(ξ) =
µ(a) = (K ⊗ i)(µ0(a)), so ξ = µ0(a) since K ⊗ i is injective, and this contradicts the hypothesis
ξ /∈ µ0(K). So (K ⊗ i)(ξ) /∈ µ(K). Since A has enough embeddings in k〈〈G〉〉, there exists
ϕ : A → k〈〈G〉〉 such that ΘK

ϕ

(
(K ⊗ i)(ξ)

)
has nonzero order. We have ΘK

ϕ ◦ (K ⊗ i) = ΘK
ϕ◦i, so

ΘK
ϕ◦i(ξ) has nonzero order. �

2.10. Proposition. Let A be an algebra over a field k and let G be a totally ordered abelian group.
Suppose that for each x ∈ A \ k, there exists an injective k-homomorphism ϕ : A → k〈〈G〉〉 such
that ϕ(x) has negative order. Then A has enough embeddings in k〈〈G〉〉.

Proof. Let K/k be a field extension and let ξ ∈ (K ⊗k A) \K. Choose a basis (ui)i∈I of K over k;
then (ui ⊗ 1)i∈I is a basis of K ⊗k A over A, so there exists a finite subset I(ξ) of I and a family
(xi)i∈I(ξ) of elements of A such that ξ =

∑
i∈I(ξ) ui ⊗ xi. Since ξ /∈ K, we have xi0 /∈ k for some

i0 ∈ I(ξ). Choose an injective k-homomorphism ϕ : A → k〈〈G〉〉 such that ϕ(xi0) has negative
order.

K // K ⊗k A //

ΘK
ϕ

++
K ⊗k k〈〈G〉〉 // K〈〈G〉〉

k //

OO

A

OO

ϕ
// k〈〈G〉〉

OO
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For each i ∈ I(ξ), we may write ϕ(xi) =
∑

j∈G aijt
j (aij ∈ k for all i, j). Then

(5) ΘK
ϕ (ξ) =

∑
i∈I(ξ)

ΘK
ϕ (ui ⊗ xi) =

∑
i∈I(ξ)

∑
j∈G

aijuit
j =

∑
j∈G

( ∑
i∈I(ξ)

aijui

)
tj.

As ϕ(xi0) =
∑

j∈G ai0jt
j has negative order, we have ai0j0 6= 0 for some j0 < 0. By linear

independence of (ui)i∈I over k, we have
∑

i∈I(ξ) aij0ui 6= 0, i.e., the coefficient of tj0 in ΘK
ϕ (ξ) is

nonzero (see (5)). So the order of ΘK
ϕ (ξ) in K〈〈G〉〉 is negative and we have shown that A has

enough embeddings in k〈〈G〉〉. �

By a function field of dimension n, we mean a finitely generated field extension of transcendence
degree n.

2.11. Proposition. Let L/k be a function field of dimension n ≥ 1, where k is an algebraically
closed field. Then L has enough embeddings in k〈〈Zn〉〉, where Zn is endowed with lexicographic
order.

Proof. Let x ∈ L \ k. Choose a nonsingular projective variety X over k whose function field is
L. Then there exists a closed point P ∈ X such that 1/x belongs to the maximal ideal of OX,P .
Let ϕ1 : OX,P → kJx1, . . . , xnK be the canonical homomorphism in the completion of OX,P . Let G
denote Zn with lexicographical order and define ϕ2 : kJx1, . . . , xnK→ k〈〈G〉〉 by∑

(e1,...,en)∈Nn

ae1,...,enx
e1
1 · · ·xenn 7−→

∑
(e1,...,en)∈Nn

ae1,...,ent
(e1,...,en)

(note that Nn is a well-ordered subset of G). Then ϕ2 ◦ ϕ1 : OX,P → k〈〈G〉〉 is an injective
k-homomorphism that maps 1/x to an element of positive order. The extension

L = Frac(OX,P )
ϕ−−→ k〈〈G〉〉

of ϕ2 ◦ ϕ1 maps x to an element of negative order. It follows from Prop. 2.10 that L has enough
embeddings in k〈〈Zn〉〉. �

2.12. Corollary. Let k be an algebraically closed field. Then every k-domain has property (SE).

Proof. Let A be a k-domain. To show that A has property (SE), we consider a field extension
K/k and an affine k-domain R satisfying R ⊆ K ⊗k A and R * K, and we have to show that
there exists a field extension L of k such that R ⊆ L⊗k A and trdegk(L) < trdegk(R).

Write R = k[r1, . . . , rm] and, for each i ∈ {1, . . . ,m}, ri =
∑ni

j=1 uij ⊗ tij (uij ∈ K, tij ∈ A).
Let A0 be the k-subalgebra of A generated by all the tij. Then A0 is an affine k-domain, so,
by Proposition 2.11, Frac(A0) has enough embeddings in k〈〈Zn〉〉 for some n. By Lemma 2.9, it
follows that A0 has enough embeddings in k〈〈Zn〉〉. So A0 has property (SE) by Theorem 2.8.
Since R ⊆ K ⊗k A0 and R * K, there exists a field extension L of k such that R ⊆ L⊗k A0 and
trdegk(L) < trdegk(R). As L⊗k A0 ⊆ L⊗k A, we have R ⊆ L⊗k A, so we are done. �

2.13. Remarks. See Definition 1.2 for the notion of a geometrically integral algebra. The following
facts are well known.

(1) If k is an algebraically closed field then every k-domain is geometrically integral over k.
(2) If k is a field and A is a k-algebra geometrically integral over k, then A is a domain and k

is algebraically closed in Frac(A).
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(3) If k is a field and A is a k-domain, then A is geometrically integral over k if and only if
Frac(A) is geometrically integral over k. Moreover, if A is geometrically integral over k
then so is every subalgebra of A.

(4) If k is a field and A a k-algebra that is geometrically integral over k then, for every field
extension K/k, K ⊗k A is geometrically integral over K and K is algebraically closed in
Frac(K ⊗k A).

(5) If k is a field and G a totally ordered abelian group, then k〈〈G〉〉 is geometrically inte-
gral over k (this follows from Lemma 2.4). Consequently, every k-subalgebra of k〈〈G〉〉 is
geometrically integral over k.

2.14. Lemma. Let k be a field and A a geometrically integral k-algebra. Suppose that there exists
an algebraic extension κ/k such that κ⊗k A has property (SE) over κ. Then A has property (SE)
over k.

Proof. Define Ā = κ ⊗k A. Let K be a field extension of k and let R be an affine k-domain
satisfying R ⊆ K ⊗k A and R * K. It has to be shown that there exists a field extension L of k
such that R ⊆ L⊗k A and trdegk(L) < trdegk(R).

Choose a maximal ideal m of K ⊗k κ, define K̄ = (K ⊗k κ)/m, and let π : K ⊗k κ → K̄ be
the canonical homomorphism. Define ϕ : K ⊗k A → K̄ ⊗κ Ā to be the composite g ◦ f , where
f : K⊗kA→ K⊗kA⊗k κ is the canonical map x 7→ x⊗ 1, and where g : K⊗kA⊗k κ→ K̄⊗κ Ā
is the following composition:

K ⊗k A⊗k κ ∼= K ⊗k κ⊗k A ∼= K ⊗k κ⊗κ κ⊗k A = K ⊗k κ⊗κ Ā
π⊗id−−−→ K̄ ⊗κ Ā

α⊗ t⊗ y 7→ α⊗ y ⊗ t 7→ α⊗ y ⊗ 1⊗ t = α⊗ y ⊗ (1⊗ t) 7→ π(α⊗ y)⊗ (1⊗ t)
where α ∈ K, t ∈ A and y ∈ κ. Note that given α ∈ K and t ∈ A,

(6) ϕ sends the element α⊗ t ∈ K ⊗k A to π(α⊗ 1)⊗ (1⊗ t) ∈ K̄ ⊗κ (κ⊗ A) = K̄ ⊗κ Ā.

Let ψ : K → K̄ be the composition K → K ⊗k κ
π−→ K̄. Then (6) implies that the diagram

(7) K̄
ū // K̄ ⊗κ Ā K̄ ⊗κ κ⊗k A

K
u //

ψ

OO

K ⊗k A

ϕ

OO

ψ⊗id
// K̄ ⊗k A

∼=θ

OO

commutes, where u (resp. ū) is the map x 7→ x⊗ 1 and θ(x⊗ t) = x⊗ 1⊗ t (for x ∈ K̄, t ∈ A).
Since ψ is injective, so is ψ ⊗ id : K ⊗k A→ K̄ ⊗k A; so, by commutativity of diagram (7),

(8) ϕ is injective.

We claim:

(9) if x ∈ K ⊗k A satisfies ϕ(x) ∈ ū(K̄), then x ∈ u(K).

To see this, consider a ∈ K̄ such that ū(a) = ϕ(x). Since ψ is the composition K → K ⊗k κ
π−→ K̄

where the first map is an integral homomorphism and the second is surjective, K̄ is an algebraic
extension of its subfield ψ(K). So there exists a monic polynomial P ∈ K[X] \ {0} such that
P (ψ)(a) = 0 (where for P (X) =

∑
i αiX

i, αi ∈ K, we write P (ψ)(X) =
∑

i ψ(αi)X
i ∈ K̄[X]).

Then

ϕ(P (u)(x)) = P (ϕ◦u)(ϕ(x)) = P (ϕ◦u)(ū(a)) = P (ū◦ψ)(ū(a)) = ū(P (ψ)(a)) = ū(0) = 0;
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since ϕ is injective, we get P (u)(x) = 0 and hence x is integral over u(K); since u(K) is integrally
closed in K ⊗k A (because A is geometrically integral over k, see Rem. 2.13(4)), x ∈ u(K), which
proves (9).

Note that R ⊗k κ is a finitely generated κ-algebra and that K̄ ⊗κ Ā is a domain (because Ā
is geometrically integral over κ, by Rem. 2.13(4)). Define R̄ ⊆ K̄ ⊗κ Ā to be the image of the

κ-homomorphism R⊗k κ→ K ⊗k A⊗k κ
g−→ K̄ ⊗κ Ā. Then R̄ is an affine κ-domain and we have

the commutative diagram

(10) K ⊗k A
f // K ⊗k A⊗k κ

g // K̄ ⊗κ Ā

R

OO

// R⊗k κ

OO

// R̄

OO

which we simplify to

K ⊗k A
ϕ // K̄ ⊗κ Ā

R

OO

// R̄

OO

(recall that ϕ = g◦f). If R̄ ⊆ ū(K̄) then ϕ(R) ⊆ ū(K̄), so (9) implies that R ⊆ u(K), which is not
the case. So R̄ * ū(K̄). Since Ā has property (SE) over κ, it follows that there exists an extension
L/κ such that trdegκ(L) < trdegκ(R̄) and R̄ ⊆ L ⊗κ Ā. Observe that in R → R ⊗k κ → R̄, the
first homomorphism is integral and the second is surjective; so R → R̄ is integral. By (8) and
(10), R → R̄ is also injective. So Frac(R̄) is an algebraic extension of Frac(R) and consequently
trdegκ(R̄) = trdegk(R). Then L is an extension of k and trdegk(L) = trdegκ(L) < trdegκ(R̄) =
trdegk(R). Moreover,

R ⊆ R̄ ⊆ L⊗κ Ā = L⊗κ κ⊗k A = L⊗k A,
so the proof is complete. �

We may now complete the proof of our main result:

Proof of Theorem 1.3. Let k be a field and A a k-domain that is geometrically integral over k.
Let k̄ be the algebraic closure of k and let Ā = k̄ ⊗k A. Then Ā is a k̄-domain so, by Corollary
2.12, Ā has property (SE) over k̄. By Lemma 2.14, A has property (SE) over k. �
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