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The first section of this text is a survey of Hilbert’s Fourteenth Problem. However
the reader will quickly realize that the survey is somewhat biased, as more attention
is given to the questions pertaining to derivations than to those having to do with
algebraic group actions. In fact the aim is to arrive quickly at destination, namely, the
following special case of Hilbert’s question:

(?) If D is a locally nilpotent derivation of a polynomial ring k[X1, . . . , Xn], where

k is a field of characteristic zero, is ker(D) finitely generated as a k-algebra?

Also, we will not pay much attention to the historical aspect but will make a serious
effort to explain the logical organization of the various subcases of the problem.

The question addressed by the second section can be phrased as follows:

Which subalgebras of k[X1, . . . , Xn] are kernels of locally nilpotent derivations?

In this perspective, the question whether these algebras are finitely generated (that is,
question (?)) is only one aspect of the problem. We shall discuss this question for small
values of n, and in particular for n = 3, in which case these algebras are known to be
finitely generated.

Throughout, k is a field and R = k[n] (which means that R is a polynomial ring in n
variables over k). The field of fractions of a domain A is denoted FracA, and Frac(k[n])
is denoted k(n). If A is a ring, A∗ denotes its group of units.

1. A biased survey of Hilbert’s Fourteenth Problem

Let k be a field and R = k[n]. In Hilbert’s famous paper [21] proposing 23 mathe-
matical problems, the 14th item of the list is the following:

H14. If K is a field such that k ⊆ K ⊆ Frac(R), is K ∩ R finitely generated as a
k-algebra?

We begin by stating five special cases of this problem. The first three are concerned
with group actions and invariants, and the other two with derivations and rings of
constants.

Group Actions

If A is an affine k-domain and H is a subgroup of Autk(A), define a k-subalgebra
AH of A (called the ring of invariants) by:

(1) AH =
{

a ∈ A | ∀h∈H h(a) = a
}

.
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It is immediate that Frac(AH)∩A = AH (the intersection being taken in FracA), so if
A = k[n] then the question whether AH is finitely generated is a special case of H14.

Suppose now that G is an algebraic group acting on an affine algebraic variety
V = Spec A. Since each element of G determines an automorphism of V and hence an
automorphism of A, the action determines a subgroup G of Autk(A) in a natural way
and one defines the ring of invariants AG of the action by:

AG = AG

where AG is defined in (1). This leads to the following special case of H14 (where “GA”
refers to “group actions”):

H14-GA. If G is an algebraic group acting algebraically on An = Spec R, is RG finitely
generated as a k-algebra?

We shall mention two special cases of H14-GA but first we need some definitions.
Recalll that R = k[n]. By a coordinate system of R we mean an ordered n-tuple
γ = (X1, . . . , Xn) of elements of R such that R = k[X1, . . . , Xn]. Choosing a coordinate
system γ determines an embedding GLn(k) ↪→ Autk(R) whose image we shall denote
GLγ

n(k).
Suppose that G is an algebraic group acting on An = Spec R and consider the

corresponding subgroup G of Autk(R) as before. If there exists a coordinate system γ
of R such that GLγ

n(k) ⊇ G, we say that G acts “by linear automorphisms.”1 So we
may consider the following special case of H14-GA:

H14-LinGA. If G is an algebraic group acting algebraically on An = Spec R by linear

automorphisms, is RG finitely generated as a k-algebra?

This problem was Hilbert’s motivation for H14 and, for that reason, is sometimes
referred to as the Original 14th Problem. However we stress that the problem that
Hilbert proposed in paper [21] was H14, not H14-LinGA (so “original” refers to the
origin of the problem, not to its authenticity as a member of Hilbert’s list).

The second special case of H14-GA which we consider is:

H14-ConnGA. If G is a connected algebraic group acting algebraically on An =
Spec R, is RG finitely generated as a k-algebra?

However we note that H14-ConnGA and H14-GA are equivalent, by virtue of the
following:

1.1. Lemma. Let G be an algebraic group acting algebraically on A
n = Spec R, and let

G0 be the connected component of G containing the identity. Then

RG is finitely generated over k ⇐⇒ RG0 is finitely generated over k.

Proof. Consider the inclusions k ⊆ RG ⊆ RG0 . As G0 has finite index in G it follows
that RG0 is integral over RG. Moreover, RG = Frac(RG)∩R is an intersection of normal
domains, and so is normal; similarly, RG0 is normal. The desired conclusion follows

from these observations together with finiteness of integral closure. �

1In this situation one also says that the group action is linearizable.
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It also follows from 1.1 that H14-GA has an affirmative answer whenever G is a finite
group (G0 is the trivial group, so RG0 is finitely generated, so RG is finitely generated
by 1.1). There are other cases where H14-GA is known to have an affirmative answer,
for instance when G is reductive, or in the special case G = Ga of H14-LinGA, but we
shall not discuss this (some details can be found in [19]).

Derivations

Let R = k[n] where k is a field of characteristic zero.

If A is a k-domain and D : A → A a k-derivation then ker D =
{

x ∈ A | Dx = 0
}

is a k-subalgebra of A and Frac(ker D) ∩ A = ker D. So the following is a special case
of H14:

H14-Der. If D : R → R is a k-derivation, is ker D finitely generated as a k-algebra?

and of course the following is a special case of H14-Der:

H14-LND. If D : R → R is a locally nilpotent derivation, is ker D finitely generated

as a k-algebra?

Recall that a derivation D : R → R is locally nilpotent if for each f ∈ R there
exists N > 0 (depending on f) such that DN(f) = 0. Consider the algebraic group Ga

(which can be identified with (k, +) when k is algebraically closed). It is well-known
that each locally nilpotent derivation D : R → R determines an algebraic action of Ga

on An satisfying RGa = ker D, and that all Ga-actions on An are obtained in this way.
Thus H14-LND can also be viewed as the special case G = Ga of H14-ConnGA.

Moreover, Nowicki [28] showed that H14-ConnGA is a special case of H14-Der. We
explain this. Let A ⊆ B be integral domains. An element b ∈ B is algebraic over
A if there exists a nonzero polynomial f(T ) ∈ A[T ] such that f(b) = 0 (where f(T )
is not required to be monic). If the elements of A are the only elements of B which
are algebraic over A, we say that A is algebraically closed in B. The following are
Theorems 5.4 and 6.4 of [28]. In both statements, k is an arbitrary field of characteristic
zero; in the second result, R = k[n].

1.2. Theorem (Nowicki, 1994). For a subalgebra A of an affine k-domain B, the
following are equivalent:

(a) A is the kernel of some k-derivation D : B → B

(b) A is algebraically closed in B.

1.3. Theorem (Nowicki, 1994). If G is a connected algebraic group acting on An =
Spec R, then RG is algebraically closed in R (and hence RG = ker D for some k-

derivation D : R → R).

Remark. As far as this author knows, the following is an open question: If A is the

kernel of some k-derivation of R = k[n], does there exist an algebraic group action on
An such that A = RG?
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So we have the following hierarchy of special cases of H14:

H14

ooooooooooo

PPPPPPPPPPPP

H14-GA go
1.1

'/WWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWW
H14-Der

1.3

H14-ConnGA

H14-LinGA H14-LND

Status of H14

The last open cases of H14 and H14-Der have been settled by Kuroda in 2005,
but the other cases (H14-GA, H14-LinGA and H14-LND) are still open. The present
subsection briefly describes the situation concerning H14, and the next one discusses
H14-LND and H14-Der.

According to a comment by Nagata in [27], no contribution to H14 was made until
1953 when Zariski obtained the following:

Zariski’s Theorem (cf. [34]). Let A be a normal affine domain over a field k and let
K be a field such that k ⊆ K ⊆ FracA. If trdeg(K/k) ≤ 2, then K ∩ A is finitely

generated as a k-algebra.

So H14 has an affirmative answer whenever trdeg(K/k) ≤ 2. Having obtained this
result, Zariski proposed a generalised version of H14 in which R would be any normal
affine k-domain. In 1957 Rees [30] gave a counterexample to that generalized problem,
but this was not a counterexample to H14. However Rees’ idea to use symbolic blow-
up of prime ideals would eventually be revisited by others and give rise to important
developments (notably 1.5, below). The first counterexamples to H14 were found by
Nagata, and were in fact counterexamples to H14-LinGA (which he calls the original
14-th problem). In particular, one example given in [27] implies:

1.4 (Nagata, 1959). Let k be a field (of any characteristic) whose transcendence degree

over the prime field is at least 48. Then there exists an algebraic group G acting
algebraically on R = k[32] by linear automorphisms such that RG is not finitely generated
over k. Moreover, K = Frac(RG) has transcendence degree 4 over k.

The next counterexamples to H14 were found 30 years later by Roberts, and imply
the following statement:

1.5 (Roberts 1990, [32]). Let k be a field of characteristic zero and R = k[7]. Then

there is a field K such that k ⊂ K ⊂ FracR, trdeg(K/k) = 6 and K ∩R is not finitely
generated.
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This reignited the interest in the subject and, in the following years, several authors
contributed counterexamples. However in all cases K had transcendence degree at
least 4, and in fact the case trdeg(K/k) = 3 of H14 remained completely open until
Kuroda found several counterexamples in 2005–2006. In particular:

1.6 (Kuroda, [25]). Let k be a field of characteristic zero and e ≥ 3 an integer. Then

there exists a field K such that k ⊂ K ⊂ k(X, Y, Z), [k(X, Y, Z) : K] = e and
K ∩ k[X, Y, Z] is not finitely generated.

An easy consequence of 1.6 is:

1.7. Corollary. Let k be a field of characteristic zero, 3 ≤ d ≤ n integers, R = k[n].
Then there exists a field K such that k ⊂ K ⊂ Frac(R), trdeg(K/k) = d and K ∩R is

not finitely generated as a k-algebra.

Zariski’s Theorem and 1.7 settle H14, in the narrow sense that for every pair of
integers n ≥ d ≥ 0 we know whether or not there exists a counterexample (to H14)
with R = k[n] and trdeg(K/k) = d. However, we understand very little of the problem!

Status of H14-Der and of H14-LND

Throughout this subsection, k is any field of characteristic zero. From Zariski’s The-
orem and the elementary fact that the kernel of a derivation of R = k[n] is algebraically
closed in R, one immediately obtains:

1.8. Corollary. If R = k[n] with n ≤ 3, then the kernel of any k-derivation D : R → R
is a finitely generated k-algebra.

Kuroda [24] constructed some examples in 2005 showing that there exists a k-
derivation of k[4] whose kernel is not finitely generated as a k-algebra (note that
Kuroda’s derivation is not locally nilpotent). From this and Nowicki’s result 1.2, it
is easy to derive the following statement:

1.9. Corollary. Given integers n > d ≥ 3, there exists a k-derivation of k[n] whose
kernel has transcendence degree d over k and is not finitely generated.

By 1.8 and 1.9, H14-Der is settled (in the narrow sense that we have already ex-
plained). Before discussing the status of H14-LND, we make two remarks.

So far we have been parametrizing Hilbert’s Problem by the pair (n, d), where R =
k[n] and d = trdeg(K/k), but here the reader should note that if D 6= 0 is a locally
nilpotent derivation of k[n] then ker D has transcendence degree n− 1 over k. In other
words, H14-LND depends on n alone.

Let R = k[X1, . . . , Xn] = k[n] and recall that a k-derivation D : R → R is trian-
gular if DXi ∈ k[X1, . . . , Xi−1] holds for all i. Our second remark is that triangular
derivations have the following (well-known and elementary) property:

If D : R → R is triangular then it is locally nilpotent and moreover
ker D contains a variable of R,
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where by a variable of R we mean an element f ∈ R for which there exist f2, . . . , fn

satisfying R = k[f, f2, . . . , fn].
The first counterexamples to H14-LND were obtained by A’Campo-Neuen [1] and

Deveney and Finston [15], by showing that Robert’s counterexamples 1.5 to H14 were
in fact kernels of locally nilpotent derivations of k[7]. So the case n = 7 of H14-LND
has a negative answer, and so does the case n = 6 by an example of Freudenburg [18].
Then Freudenburg and this author gave the following example in [9]:

1.10. Let R = k[a, b, x, y, z] = k[5] and define a k-derivation D : R → R by

D = a2 ∂

∂x
+ (ax + b)

∂

∂y
+ y

∂

∂z
.

Then ker D is not finitely generated as a k-algebra.

Note that D (in 1.10) is triangular, hence locally nilpotent. The current status of
H14-LND can be summarized by:

• H14-LND has an affirmative answer when n ≤ 3 (by 1.8),
• it follows from 1.10 that, for each n ≥ 5, there exists a locally nilpotent deriva-

tion of k[n] whose kernel is not finitely generated.

The case n = 4 of H14-LND is still open, and is quite interesting. Freudenburg and
this author gave the following results in [11] and [10]:

1.11. The kernel of any triangular derivation of k[4] is finitely generated.

1.12. Given m ∈ N, there exists a triangular derivation of k[4] whose kernel cannot be

generated by fewer than m elements.

Result 1.11 is particularly interesting if one remembers that D in 1.10 is a triangular
derivation of k[5]. We point out that 1.11 was obtained in [11] as a corollary of the case
A = k[1] of the following result (also proved in [11]):

1.13. Theorem. If A is a k-affine Dedekind domain then the kernel of any triangular
A-derivation of A[3] is finitely generated as a k-algebra.

In unpublished work, Bhatwadekar showed that 1.13 remains valid (with almost the
same proof, modulo some clever observations) if the word “triangular” is replaced by
“locally nilpotent”. This gives the following improved versions (due to Bhatwadekar)
of 1.13 and 1.11:

1.13.1. Theorem. If A is a k-affine Dedekind domain then the kernel of any locally
nilpotent A-derivation of A[3] is finitely generated as a k-algebra.

1.11.1. Corollary. Let D : R → R be a locally nilpotent derivation, where R = k[4]. If

ker D contains a variable of R, then ker D is finitely generated as a k-algebra.

Regarding 1.13 and 1.13.1, one should note that the hypothesis that dim A = 1 is
important: if A = k[2] then (by 1.10) there exists an A-triangular derivation of A[3]

whose kernel is not finitely generated.
Not all locally nilpotent derivations D of R = k[4] have the property that ker D

contains a variable of R (cf. [17]); so it is still not known whether or not there exists a
locally nilpotent derivation of k[4] whose kernel is not finitely generated.
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Status of H14-GA and of H14-LinGA

Much could be said here, but we limit ourselves to the following utterly incomplete
remarks.

Freudenburg [20] gave a counterexample to H14-LinGA with n = 11; this appears
to be the lowest dimension for which a counterexample is known, and the question
remains open for 5 ≤ n ≤ 10.

By Zariski’s Theorem, 1.1 and 1.3, H14-GA has an affirmative answer whenever
n ≤ 3; by 1.10, it has a negative answer when n ≥ 5. As far as this author knows, the
case n = 4 is open (see also the remark after 1.3).

2. Kernels of locally nilpotent derivations

Throughout this section, R = k[n] where k is an arbitrary field of characteristic zero.
We shall discuss the following question:

(∗) Which subalgebras of R are kernels of locally nilpotent derivations D : R → R ?

It is convenient to introduce a notation: if B is a ring, we define

klnd(B) = { ker D | D : B → B is a locally nilpotent derivation

other than the zero derivation }.

Then the question (∗) under consideration is:

2.1. Problem. Describe the set klnd(R), where R = k[n].

Hilbert’s Problem H14-LND asks whether each element of klnd(R) is finitely gen-
erated as a k-algebra, which is one aspect of 2.1.

There is good motivation for Problem 2.1. Solving it would immediately lead to a
description of all locally nilpotent derivations of k[n], which is equivalent to describing
all Ga-actions on An (note that Problem 2.1 asks for a classification of the algebraic
quotient maps An → An//Ga). Also, the subgroup E of Autk(R) generated by the set

{

exp(D) | D : R → R is a locally nilpotent derivation
}

is in fact normal, E C Autk(R), and is thought to be essentially all of Autk(R) (it is
conjectured that Autk(R) is generated by E and the linear automorphisms); so one
hopes that progress in 2.1 would lead to progress in the understanding of automor-
phisms of k[n]. As another motivation, observe that any subalgebra A of R satisfying
R = A[1] is an element of klnd(R); so this is closely related to the Cancellation Prob-
lem, which asks: if A is a subalgebra of R = k[n] such that R = A[1], does it follow that
A = k[n−1]?

In what follows we sometimes refer to the fact that the group Autk(R) acts on the
set klnd(R); the action is the obvious one: if θ ∈ Autk(R) and A ∈ klnd(R) then
θA := θ(A). Also, it is good to keep in mind the following fact, valid for all n ≥ 1:

Let R = k[n] and let A ∈ klnd(R). Then

Frac A ⊗A R = (FracA)[1].

Consequently, FracA is stably rational: (FracA)(1) = k(n).
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We shall now make a few very basic comments on Problem 2.1 for small values of n.
The case n = 3 will be elaborated afterwards.

2.1.1. The case n = 1 of 2.1 is trivial: klnd(k[1]) = {k}.

2.1.2. The case n = 2 is not trivial, but is solved: Rentschler proved in [31] that if

A ∈ klnd(R) where R = k[2], then there exist X, Y such that R = k[X, Y ] and
A = k[X]. Thus, if R = k[n] with n ∈ {1, 2}, each element A ∈ klnd(R) satisfies

(2) A = k[n−1] and R = A[1].

It follows that Autk(R) acts transitively on klnd(R) when n ≤ 2.

2.1.3. Case n = 3. By a theorem of Miyanishi [26], each A ∈ klnd(k[3]) satisfies
A = k[2] (which is a great improvement over 1.8); in other words, the first part of (2)

is still valid. However the second part fails, as one can prove:

If n ≥ 3 then the action of Autk(R) on klnd(R) is not transitive, and

the set of orbits has cardinality |k|.

2.1.4. Case n = 4. Here, it is no longer the case that any two elements of klnd(R) are

isomorphic to each other; indeed, one can show:

If n ≥ 4 then
{

[A] | A ∈ klnd(R)
}

is an infinite set, where [A]

denotes the isomorphism class of the the k-algebra A.

However, Deveney and Finston [14] showed that (if k = C) the field of fractions of any

element of klnd(k[4]) is k(3). It is not known whether every A ∈ klnd(k[4]) is finitely
generated over k, as we saw in the first section. Moreover, one knows examples of
kernels A ∈ klnd(R) (where R = k[4]) such that R is not a flat A-module (in contrast

with the case n ≤ 3, where R is always a faithfully flat A-module; cf. 2.2).

2.1.5. If n ≥ 5 then some elements of klnd(R) are not finitely generated. The question

whether A ∈ klnd(k[n]) implies FracA = k(n−1) is open, as far as this author knows
(however (FracA)(1) = k(n) is always true).

We summarize the above discussion with the following table:

For all A ∈ klnd(R) n = 1 2 3 4 5

A = k[n−1] and R = A[1] yes yesa no no no

A = k[n−1] yes yes yesb no no

FracA = k(n−1) yes yes yes yesc ?

A is finitely generated yes yes yes ? no

aRentschler 1968, [31].
bMiyanishi 1985, [26].
cDeveney and Finston 1994, [14].
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The case n = 3

We now restrict ourselves to the problem of describing klnd(R) when R = k[3]

(and where k is any field of characteristic zero). Although this is still far from being
understood, many partial results are known and there is steady progress, for instance:

2.2. Theorem (Bonnet 2002, [2]). If A ∈ klnd(R) then the morphism Spec R →

Spec A, determined by the inclusion A ↪→ R, is surjective. Furthermore, R is faithfully
flat as an A-module.

2.3. Theorem (Kaliman 2002, [22]). A fixed point free Ga-action on A3 is a translation.

2.4. There has been significant progress also in the homogeneous case of the problem.

Given a positive grading g of R (that is, an N-grading R = ⊕i∈NRi satisfying R0 =
k), one considers the set klnd(R, g) of kernels of g-homogeneous locally nilpotent
derivations of R; the problem then is to describe klnd(R, g) for each positive grading g.

Early work on this question was done in [4], [5], and a geometric version of the problem
was solved in [12], [13]. Although we cannot claim to have a complete solution, work

in progress [8] describes klnd(R, g) to a large extent. For instance we will mention
below that certain conjectures have been proved in the homogeneous case; the proofs
are in [8]. We note that [8] makes crucial use of [12], [13].

Local slice construction. In the homogeneous case as well as in the general case, the
main hope is to obtain a description of klnd(R) in terms of the “local slice construc-
tion” (LSC). The LSC is a method, introduced by Freudenburg in [16], for modifying a
kernel. That is, given a kernel A ∈ klnd(R) and a parameter σ (which has to be chosen
in a certain set), the process constructs a new element lsc(A, σ) of klnd(R) distinct
from A. One says that A′ = lsc(A, σ) is obtained from A by local slice construction.
We recall the definition of lsc(A, σ) in 2.7, below, but first we need a notation.

2.5. If A ∈ klnd(R) then, up to multiplication by an element of k∗, there exists a
unique locally nilpotent derivation ∆A : R → R which satisfies (i) ker(∆A) = A;
and (ii) ∆A is “irreducible”, i.e., the only principal ideal of R which contains ∆A(R)

is R itself. Concretely, ∆A can be obtained as follows: choose X, Y, Z such that
R = k[X, Y, Z] and (cf. 2.1.3) choose f, g such that A = k[f, g]; then for any h ∈ R

define ∆A(h) =
∣

∣

∣

∂(f,g,h)
∂(X,Y,Z)

∣

∣

∣
. (The fact that this jacobian derivation coincides with ∆A is

proved in [3].)

2.6. Definition. Given A ∈ klnd(R), let ΣA be the set of ordered triples (f, g, s) of

elements of R satisfying A = k[f, g] and ∆A(s) = αg for some α ∈ k[f ] \ {0}.

The following is essentially Theorem 2 of [16].

2.7. Theorem and definition. Suppose that A ∈ klnd(R) and σ = (f, g, s) ∈ ΣA.

(a) There exists an essentially unique irreducible polynomial in two variables Φ(U, V ) ∈

k[U, V ] such that Φ(f, s) ∈ gR.



10 DANIEL DAIGLE

(b) If we define g′ = Φ(f, s)/g ∈ R, then there exists a unique element A′ ∈
klnd(R) such that k[f, g′] ⊆ A′. Moreover, A′ 6= A.

In this situation, we define lsc(A, σ) = A′.

2.7.1. Note that in 2.7 we have f ∈ A ∩ A′.

2.8. Examples (cf. Section 4.2 of [16]). Fix X, Y, Z such that R = k[X, Y, Z] and let

s = X3 + XY Z − Y 3.

• Let A1 = k[H0, H1] ∈ klnd(R), where H0 = Y and H1 = X, and let σ1 =
(H1, H0, s); then σ1 ∈ ΣA1

and lsc(A1, σ1) = k[H1, H2] where H2 = XZ − Y 2.

• Let A2 = k[H1, H2] and σ2 = (H2, H1, s), then σ2 ∈ ΣA2
and lsc(A2, σ2) =

k[H2, H3], where H3 = X5 + 2X3Y Z − 2X2Y 3 + X2Z3 − 2XY 2Z2 + Y 4Z.

• Let A3 = k[H2, H3] and σ3 = (H3, H2, s), then σ3 ∈ ΣA3
and lsc(A3, σ3) =

k[H3, H4], where H4 is a homogeneous polynomial of degree 13 which we will
not write down explicitely.

Continuing this process, one obtains an infinite sequence {Hn}
∞

n=0 of homogeneous poly-
nomials of degrees 1, 1, 2, 5, 13, 34, 89, . . . (every other term in the Fibonacci sequence),

and an infinite sequence {An}
∞

n=1 of elements of klnd(R), where An = k[Hn−1, Hn].
Moreover, An+1 is obtained from An by a local slice construction:

k[H0, H1]
LSC

k[H1, H2]
LSC

k[H2, H3]
LSC

k[H3, H4] · · ·

k[Hn−1, Hn] ∈ klnd(R) for all n ≥ 1.

Remark. The sequence {Hn}
∞

n=1 was discovered and rediscovered by several authors.
We have already mentioned Freudenburg’s paper [16]; there it is shown that k[Hn−1, Hn]

∈ klnd(R) for all n ≥ 1. The sequence {Hn}
∞

n=1 also appeared in unpublished work of
Gizatullin, in relation with automorphisms of k[3]. Now consider the curve V (Hn) ⊂ P2

whose equation is Hn = 0. Then V (H3) is Yoshihara’s rational quintic [33]. More

generally, all V (Hn) are “Kashiwara curves”: in [23], they correspond to the case
where the divisor Γ is a linear chain. The V (Hn) are also “Orevkov curves”: in [29]
Orevkov defines curves Cj ⊂ P2 where j > 0 is either odd or a multiple of 4, and

uses them to show that a certain inequality (involving degree of a rational curve and
highest multiplicity of a singular point) is best possible; the V (Hn) correspond exactly
to the Cj with j odd, i.e., to the Orevkov curves whose complements have logarithmic

Kodaira dimension −∞. In my joint work [13] with Peter Russell, the curves V (Hn)
appear in the basic affine rulings of P2.

One can also show that, up to automorphism of P
2, the V (Hn) are precisely the curves

C ⊂ P2 whose complement P2 \ C is completable by a rational zigzag, or equivalently,
whose complement P2 \ C has trivial Makar-Limanov invariant.

All this shows that {Hn}
∞

n=1 is indeed a remarkable sequence of polynomials!

As we have already said, one hopes to describe klnd(R) in terms of the local slice
construction. One aspect of such a description would be:
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2.9. Conjecture. Given any A, A′ ∈ klnd(R), there exists a finite sequence of local
slice constructions which transforms A into A′.

A weaker version of 2.9 asks for the existence of a finite sequence of “operations”
which transforms A into A′, where the allowed operations are local slice constructions
and k-automorphisms of R; this appeared as a question in [16].

Two special cases of Conjecture 2.9 have now been proved; in both cases, assume
that k is algebraically closed:

2.9.1 (cf. [8]). If A, A′ ∈ klnd(R, g) for some positive grading g of R, there exists a

finite sequence of local slice constructions which transforms A into A′.

2.9.2 (cf. 1.13 of [7]). Let A, A′ be elements of klnd(R) such that A ∩ A′ 6= k. Then

there exists a finite sequence of local slice constructions which transforms A into A′.

Result 2.9.2 is a corollary of 2.14 (below) and of [6]. It was obtained as a byproduct
of an effort to answer the following question:

(†) Which polynomials f(X, Y, Z) are annihilated by at least two indepen-

dent locally nilpotent derivations?

(Here the word “independent” means that the derivations are nonzero and have distinct
kernels.) It appears to this author that answering the above question is an essential
step in the classification of locally nilpotent derivations of k[3]. So let us now discuss
this question.

Basic elements

Until the end of this section, we assume that k is algebraically closed (and has
characteristic zero, as before). Let R = k[3]. The following discussion is based on [7].

2.10. Definition. An element of R is said to be basic if it is irreducible and belongs
to at least two elements of klnd(R).

One can show that if A, A′ are distinct elements of klnd(R) such that A∩A′ contains
a nonconstant polynomial, then A ∩ A′ = k[f ] where f is basic. So question (†) will
be fully answered if we can understand basic elements of R.

It is immediate that all variables of R are basic. Moreover, one can show that each
basic element is a “good field generator,” i.e.,

2.11 (cf. 1.5 of [7]). If f is a basic element of R then there exist g, h ∈ R such that

k(f, g, h) is the field of fractions of R.

As the set of basic elements includes all variables and is included in the set of good
field generators, it seems legitimate to state that the concept of basic element is a
natural generalization of that of variable.

2.12. Example. Let R = k[X, Y, Z], choose a nonconstant ϕ(Z) ∈ k[Z] and let f =

XY −ϕ(Z); then f is an irreducible element of R and k[X, f ], k[Y, f ] are two elements
of klnd(R); thus f is a basic element of R.
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2.13. Example. Let P (X, Y, Z) ∈ R = k[X, Y, Z] be a variable of R over k[X] such
that deg P (0, 0, Z) > 0, and define f = P (X, XY, Z). Then one can show that f is a

basic element of R.

The following result characterizes basic elements in terms of their generic fiber.

2.14. Theorem (cf. 1.10 and 1.11 of [7]). Let R = k[3] where k is an algebraically
closed field of characteristic zero. For an element f ∈ R, the following conditions are

equivalent:

(a) f is a basic element of R

(b) the k(f)-algebra k(f)⊗k[f ] R is isomorphic to k(f)[U, V, W ] /(UV −P (W )) for

some nonconstant polynomial P (W ) ∈ k(f)[W ], where U, V, W are independent
indeterminates over k(f).

Moreover, if f satisfies the above conditions then it also satisfies:

(c) For general λ ∈ k, the hypersurface “f = λ” in A3 is isomorphic to a hypersur-

face with equation xy = ϕλ(z), for some nonconstant polynomial ϕλ(z) ∈ k[z].

Remark. In statement (c), there does not necessarely exist an automorphism of A3

which maps one hypersurface onto the other.

2.15. Example. Let f = H3, where H3 ∈ R = k[X, Y, Z] is defined in 2.8, i.e.,

f = X5 + 2X3Y Z − 2X2Y 3 + X2Z3 − 2XY 2Z2 + Y 4Z.

As f is irreducible and belongs to each of k[H2, H3],k[H3, H4] ∈ klnd(R), f is a basic

element of R and so satisfies 2.14(a). Therefore, f must satisfy conditions (b–c) of
2.14. Regarding (b), one can show that there is an isomorphism of k(f)-algebras,

k(f) ⊗k[f ] R ∼= k(f)[U, V, W ]/(UV − W 5 − f 3).

Regarding (c) one can show that, for each λ ∈ k∗, the hypersurface f = λ in A3 is

isomorphic to the hypersurface xy = z5 +1, but that no automorphism of A
3 maps one

hypersurface onto the other.
More generally, each Hn is a basic element of R and, for each λ ∈ k∗, the hypersurface

Hn = λ in A
3 is isomorphic to the hypersurface xy = zan + 1, where an = deg Hn, and

if n ≥ 3 then no automorphism of A3 maps one hypersurface onto the other.

Let us also recall that it was once hoped that every element of klnd(R) contained
a variable of R, because that would have enabled one to classify all locally nilpotent
derivations of R; however Freudenburg [17] exhibited a kernel which did not contain a
variable (namely, k[H2, H3] in 2.8). In this regard, we propose:

2.16. Conjecture. Each element of klnd(R) contains a basic element of R.

It is shown in [8] that Conjecture 2.16 is true in the homogeneous case. In fact the
basic elements are well understood in the homogeneous case, and we conclude this text
with a brief (and very incomplete) remark to this effect.
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Homogeneous basic elements

Let g be a positive grading of R (cf. 2.4). By a g-basic element of R, we mean a
g-homogeneous irreducible element f ∈ R which belongs to at least two elements of
klnd(R, g). Then [8] gives, for each g, the complete list of g-basic elements of R.
This list is obtained as a corollary to a classification of a certain type of curve on the
weighted projective plane Pg = Proj(R, g).

It is worthwile to give that list in the special case where g is the standard grading
of R = k[X, Y, Z], i.e., each of X, Y, Z is homogeneous of degree 1:

2.17. Theorem (cf. [8]). Let g be the standard grading of R. Up to an automorphism

of the graded ring (R, g) (i.e., a linear automorphism), the g-basic elements of R are
the terms of the sequence {Hn}

∞

n=1 defined in 2.8.
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