
TRIANGULAR DERIVATIONS OF k[X, Y, Z]

DANIEL DAIGLE

Abstract. Let B be the polynomial ring in three variables over a field k of char-

acteristic zero. A k-derivation D : B → B is said to be triangular if there exists a

triple (X, Y, Z) of elements of B satisfying B = k[X, Y, Z], DX ∈ k, DY ∈ k[X ] and

DZ ∈ k[X, Y ]. We give a new characterization of triangular derivations.

Let B = k[X1, X2, X3] be the polynomial ring in three variables over a field k of
characteristic zero. Recall that a k-derivation D : B → B is said to be triangular if
there exists a triple (X, Y, Z) of elements of B satisfying

B = k[X, Y, Z], DX ∈ k, DY ∈ k[X] and DZ ∈ k[X, Y ].

Because of our lack of understanding of the group of automorphisms of B, it is a
nontrivial problem to decide whether a given derivation is triangular. As triangular
derivations are in particular locally nilpotent, one usually seeks criteria for deciding
whether a given locally nilpotent derivation D : B → B is triangular. This problem
was considered by several authors (cf. [1], [16], [17], [18], [10], [3]). In [3], the problem
was reduced to the case where D is irreducible and a criterion was given in that case.
Section 5 of the present paper gives a new criterion in the irreducible case. (Refer to
2.7 for the definition of irreducibility.)

Let us say a few words about the method of proof. Consider any pair (D, s) where
D : B → B is an irreducible locally nilpotent derivation and s is a preslice of D
(i.e., s is an element of B satisfying D(s) 6= 0 and D2(s) = 0). It is known that
ker(D) is a polynomial ring in two variables over k, so the inclusion ker(D) ↪→ B
determines a morphism of algebraic varieties Q : A3 → A2. For each λ ∈ k, let
Sλ ⊂ A3 be the hypersurface given by the equation s = λ and let fλ : Sλ → A2 be

the composition Sλ ↪→ A3 Q
−→ A2, so the pair (D, s) determines the family (fλ)λ∈k of

morphisms. In Section 3 we show that, for general λ ∈ k, fλ is a birational morphism
whose missing curves and fundamental points satisfy certain constraints (cf. Section 1
for definitions). The hope, then, is to use the theory of birational morphisms of surfaces
for understanding the relation between the geometric properties of the surfaces Sλ and
the algebraic properties of the derivation D. That analysis turns out to be feasible
in the cases that we consider in sections 4 and 5. Note that, although Q : A3 → A2

is a well-studied morphism, it appears to be the first time that a systematic analysis
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of the geometric properties of preslices leads to answering an algebraic question about
derivations.

Section 4 considers an interesting subset of k[X, Y, Z] whose elements we call the
“weakly basic” polynomials and which includes in particular all variables of k[X, Y, Z].
Theorem 4.2 describes what happens when a weakly basic polynomial is a preslice of
a locally nilpotent derivation. In the special case where the weakly basic preslice is a
variable, one obtains the results of Section 5 on triangular derivations.

Conventions. All rings are commutative and have a unity. The set of units of a ring R
is denoted R∗. If r ∈ R, we denote by Rr the localization S−1R where S = {1, r, r2, . . . }.
If R is an integral domain, FracR is its field of fractions. If E is a subset of a ring R

then V (E) = VR(E) denotes the closed subset
{

p ∈ Spec R | p ⊇ E
}

of Spec R.

If A is a subring of a ring B then the notation B = A[n] means that B is isomorphic
as an A-algebra to the polynomial ring in n variables over A. If B = k[n] for some

field k ⊆ B then by a variable of B we mean an element f ∈ B for which there exist
f2, . . . , fn ∈ B such that B = k[f, f2, . . . , fn].

1. Birational morphisms of surfaces

The aim of this section is to prove result 1.6, which is used in the proof of Theo-
rem 4.2. Throughout the section, k is an algebraically closed field of arbitrary charac-
teristic.

1.1. Definition. Let Ω be a nonsingular projective algebraic surface over k. An SNC-
divisor of Ω is a reduced effective divisor D =

∑n

i=1 Di satisfying: (i) each irreducible

component Di of D is a nonsingular curve; (ii) if i 6= j then Di ·Dj ≤ 1 (where Di ·Dj

denotes the intersection number in Ω); (iii) if i, j, k are distinct then Di∩Dj ∩Dk = ∅.

If D is an SNC-divisor of Ω then the dual graph of D in Ω is the weighted graph with
vertex set {D1, . . . , Dn}, where distinct vertices Di and Dj are joined by an edge if
and only if Di ∩ Dj 6= ∅, and where the weight of a vertex Di is defined to be the

self-intersection number of Di in Ω. If the dual graph of D in Ω is a linear chain, i.e.,

has the form r r . . . r

x1 x2
xq

where q ≥ 0, xi ∈ Z, we say that D is a zigzag .

1.2. Definition. Let U be a nonsingular algebraic surface over k.

(1) We say that U is completable by rational curves if there exists an open immersion
U ↪→ Ω such that Ω is a nonsingular projective surface and Ω \ U is a union of

rational curves.
(2) We say that U is completable by a zigzag if there exists an open immersion

U ↪→ Ω such that Ω is a nonsingular projective surface, Ω \ U is the support

of an SNC-divisor D of Ω, and D is a zigzag. If in addition each irreducible
component of D is a rational curve we say that U is completable by a rational

zigzag.
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(3) We say that U has no loops at infinity if there exists an open immersion U ↪→ Ω
such that Ω is a nonsingular projective surface, Ω\U is the support of an SNC-
divisor D of Ω, and the dual graph of D in Ω does not have simple circuits (i.e.,

the graph is a forest).

1.3. Definition. Consider a birational morphism f : X → Y where X, Y are nonsin-

gular surfaces over k. A fundamental point of f is a closed point y ∈ Y such that
f−1(y) contains more than one point. A curve C ⊂ Y is called a missing curve of f if

it is an irreducible component of the closure of Y \ f(X) in Y . Note that f has finitely
many missing curves, and that a curve C ⊂ Y is a missing curve of f if and only if
C ∩ f(X) is a finite set. Refer to [2] for details.

1.4. Consider a birational morphism f : X → Y where X, Y are nonsingular surfaces
over k. It is known that f factors as

(1) X ↪→ Yn
πn−→ · · ·

π1−→ Y0 = Y,

where each Yi is a nonsingular surface, X ↪→ Yn is an open immersion and πi : Yi → Yi−1

is the blowing-up of Yi−1 at a point. In particular note that f has finitely many
fundamental points and that, if y ∈ Y is a fundamental point of f , f−1(y) has pure
dimension 1. We shall always assume that the decomposition (1) of f has been chosen

so as to minimize the integer n. This has the following consequence:

(2)
Let π : Yn → Y0 be the composition π1 ◦ · · · ◦ πn. If P is a point of

Y which is not a fundamental point of f then there exists an open
neighborhood U of P in Y such that π restricts to an isomorphism
π−1(U) → U .

Choose an open immersion Y0 ↪→ Ȳ0 such that Ȳ0 is a nonsingular projective surface
and Ȳ0 \ Y0 is the support of an SNC-divisor of Ȳ0. We may then form the larger
commutative diagram

(3)

Ȳn

π̄n // · · ·
π̄2 // Ȳ1

π̄1 // Ȳ0

Yn

πn //
?�

OO

· · ·
π2 // Y1

π1 //
?�

OO

Y0

?�

OO

X
?�

OO

f // Y

where each Ȳi is a nonsingular projective surface, each “↪→” is an open immersion and
π̄i : Ȳi → Ȳi−1 is the blowing-up of Ȳi−1 at a point (i.e., πi and π̄i are centered at the

same point).

1.5. Lemma. Let f : X → Y be a birational morphism where X, Y are nonsingular
surfaces over k.

(a) X is completable by rational curves if and only if Y is completable by rational

curves and all missing curves of f are rational.
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(b) If X has no loops at infinity and Y is affine then each missing curve of f has
one place at infinity.

(c) Consider a decomposition (1) of f and let C ⊂ Y be a missing curve of f . If

X is completable by a zigzag and Y is affine then the strict transform of C on
Yn is a nonsingular curve.

Proof. Assertions (a) and (b) (resp. (c)) follow from result 2.16 (resp. 2.17) of [2]. �

1.6. Lemma. Let X, Y be nonsingular affine surfaces over k and assume that X is

completable by a rational zigzag. For any birational morphism f : X → Y , the following
hold:

(a) Every missing curve of f is a rational curve with one place at infinity.
(b) If P is a singular point of some missing curve of f , or a common point of two

missing curves, then P is a fundamental point of f .

Proof. Assertion (a) follows from parts (a) and (b) of 1.5. We prove (b). Consider the
diagram (3) in 1.4.

Let C ⊂ Y be a missing curve of f . If some singular point of C is not a fundamental
point of f then, by (2), the strict transform of C on Yn has a singular point, which

contradicts part (c) of 1.5. So every singular point of Cj is a fundamental point of f .
Now suppose that C1, C2 are distinct missing curves of f and that P is a point of

C1 ∩C2 (in Y0 = Y ) but not a fundamental point of f . For each j = 1, 2, let C̄j be the

closure of Cj in Y 0 and let Ĉj be the strict transform of C̄j in Y n. Then, by (2),

(4) Ĉ1 ∩ Ĉ2 ∩ Yn 6= ∅.

Since Y is affine, Ȳ0 \ Y0 is a connected divisor and each C̄j meets Y 0 \ Y0; it follows

that Ȳn \ Yn is a connected divisor and that each Ĉj meets Ȳn \ Yn. Since Y n \ Yn, Ĉ1

and Ĉ2 are all included in Y n \ X, it follows from (4) that X has a loop at infinity,
which contradicts the assumption that X is completable by a zigzag. So each point

belonging to two missing curves is a fundamental point of f . �

2. Preliminaries on locally nilpotent derivations

This section gathers some definitions and known results on locally nilpotent deriva-
tions.

Let R be a ring. A derivation D : R → R is locally nilpotent if for each x ∈ R there
exists n > 0 such that Dn(x) = 0. We use the notations

lnd(R) = set of all locally nilpotent derivations D : R → R

klnd(R) =
{

ker(D) | D ∈ lnd(R) and D 6= 0
}

where ker(D) =
{

x ∈ R | D(x) = 0
}

. By a preslice of D we mean an element s ∈ R
satisfying Ds 6= 0 and D2s = 0; it is clear that if D is locally nilpotent and D 6= 0 then
D admits a preslice.
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2.1. Let R be a domain containing Q, D : R → R a nonzero locally nilpotent derivation
and A = ker D. The following facts are well-known, see for instance [11] or [9].

(a) A is a factorially closed subring of R (that is, the conditions x, y ∈ R \ {0} and
xy ∈ A imply x, y ∈ A); consequently, A∗ = R∗ and if k is any field contained

in R then D is a k-derivation.
(b) If s ∈ R is any preslice of D, and if we write a = Ds, then Ra = Aa[s] = Aa

[1].
In particular, if s is any element of R satisfying Ds ∈ R∗, then R = A[s] = A[1].

(c) Define degD(x) = max
{

n ∈ N | Dnx 6= 0
}

for x ∈ R \ {0}, and degD(0) =
−∞. Then the map degD : R → N ∪ {−∞} is a degree function, i.e., the
following hold for all x, y ∈ R: (i) degD x = −∞ ⇔ x = 0; (ii) degD(xy) =

degD x + degD y; (iii) degD(x + y) ≤ max(degD x, degD y).

2.2. Theorem (Miyanishi). Let k be a field of characteristic zero and B = k[3].

For each A ∈ klnd(B), A = k[2].

2.3. Theorem (Kaliman). Let k be a field of characteristic zero and f ∈ B = k[3].
If k(f) ⊗k[f ] B = k(f)[2] then f is a variable of B.

Results 2.2 and 2.3 were proved in [14] and [12] respectively, under the assumption
that k = C. Then the general cases follow from [13] and Lefschetz Principle arguments,
see [7] for details. The next statement is part (1) of [4, 3.8] (with a slightly different
notation); it is used in the proof of 5.1:

2.4. Lemma. Let B = k[3] where k is a field of characteristic zero. Suppose that
D ∈ lnd(B) satisfies D(V ) ∈ k[f ] \ {0}, for some variable V of B and some variable
f of ker D. Then B = k[f, V ][1].

We recall the proof of the following fact:

2.5. Lemma. Let k be a field of characteristic zero and B = k[3]. Let 0 6= D : B → B

be a locally nilpotent derivation, A = ker D and f ∈ A.

(a) If f is a variable of B then f is a variable of A.

(b) If f is a variable of A and there exists s ∈ B such that Ds ∈ k[f ] \ {0}, then f
is a variable of B.

Proof. If f is a variable of B then k[f ] ⊂ A ⊂ B = k[f ][2], where all rings are UFDs

and where A has transcendence degree one over k[f ]; as is well-known, it follows that
A = k[f ][1], which proves (a).

Suppose that f is a variable of A and that s ∈ B is such that Ds ∈ k[f ] \ {0}. Let

g be such that A = k[f, g] and let S = k[f ] \ {0}, then S−1D ∈ lnd(S−1B) satisfies

(S−1D)(s) ∈ (S−1B)∗, so 2.1(b) implies that S−1B =
(

k(f)[g]
)

[s] =
(

k(f)[g]
)[1]

, so

S−1B = k(f)[2], so f is a variable of B by 2.3. �

2.6. Lemma. Let k be a field of characteristic zero and B = k[3]. Let A ∈ klnd(B)
and consider the morphism Q : Spec B → Spec A determined by the inclusion A ↪→ B.

Then every nonempty fiber of Q has pure dimension one.
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Statement 2.6 easily follows from the fact that A is factorially closed in B. Although
2.6 is all that is needed here, one should note that stronger results are known regarding
Q, for instance one knows that Q is surjective, that B is faithfully flat over A, that the
general fiber of Q is an affine line, etc.

2.7. Definition. Let R be a ring. A derivation D : R → R is irreducible if R is the
only principal ideal of R which contains D(R). It is easy to see that if R is a UFD of

characteristic zero and A ∈ klnd(R) then there exists an irreducible locally nilpotent
derivation ∆A : R → R such that ker(∆A) = A, and ∆A is unique up to multiplication
by a unit. This defines the notation ∆A. Also, one can easily show that the set of

locally nilpotent derivations of R with kernel A is
{

a∆A | a ∈ A \ {0}
}

.

2.8. Definition. Let R be a ring and D : R → R a locally nilpotent derivation. Then

the closed subset V (D(R)) =
{

p ∈ Spec R | p ⊇ D(R)
}

of Spec R is denoted Fix(D).

2.9. It is clear that if R is a UFD of characteristic zero and D : R → R is a locally

nilpotent derivation then D is irreducible if and only if the codimension of Fix(D) in
Spec(R) is strictly greater than 1.

The following is a variation on a known theme, see for instance [15, Lemma 1.1].

2.10. Lemma. Let R be a Q-algebra with finitely many minimal prime ideals, let p be
a minimal prime ideal of R and let D : R → R be a derivation. Then D(p) ⊆ p.

Proof. Let η be the nilradical of R. Consider the ring homomorphism ε : R → R[[t]],

ε(x) =
∑

∞

n=0
Dn(x)

n!
tn, where t is an indeterminate. If x ∈ η then ε(x) is a nilpotent

element of R[[t]], so each coefficient of the power series ε(x) belongs to η, so in particular
D(x) ∈ η. So, without using the assumption that R has finitely many minimal prime

ideals, we have shown:

(5) D(η) ⊆ η.

Now let p1, . . . , pn be the distinct minimal prime ideals of R and let us show that
D(p1) ⊆ p1. Note that η = p1 ∩ · · · ∩ pn, so if n = 1 then we are done by (5).

Assume that n > 1 and consider x ∈ p1. Pick y ∈ (p2 ∩ · · · ∩ pn) \ p1, then xy ∈ η,

so (5) gives D(xy) ∈ η, so

D(x)y2 + xyD(y) = y(D(x)y + xD(y)) = yD(xy) ∈ η.

As xyD(y) ∈ η, it follows that D(x)y2 ∈ η ⊆ p1 and hence that D(x) ∈ p1, showing
that D(p1) ⊆ p1. �

2.11. Corollary. Let R be a finitely generated algebra over a field K of characteristic
zero and D : R → R a locally nilpotent derivation. If for each minimal prime ideal p

of R we have

dim(R/p) = 1 and D(R) 6⊆ p,

then each element of ker D is algebraic over K.
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Proof. Let x ∈ ker D. If p is a minimal prime ideal of R then D(p) ⊆ p by 2.10, so D
determines a locally nilpotent derivation D̄ of R/p. Moreover, D̄ 6= 0 since we have
D(R) 6⊆ p by assumption. As R/p is a one-dimensional integral domain and a finitely

generated K-algebra, ker D̄ is algebraic over K, so the element x+p of R/p is algebraic
over K. So there exists a nonzero polynomial Fp(T ) ∈ K[T ] such that Fp(x) ∈ p, and

this is true for each p ∈ M where M is the set of minimal prime ideals of R. Define
F (T ) =

∏

p∈M Fp(T ) ∈ K[T ] \ {0}, then F (x) belongs to all minimal prime ideals of

R. Thus F (x) is nilpotent and hence x is a root of F (T )n ∈ K[T ] \ {0} for n large
enough. So x is algebraic over K. �

2.12. Example. In 2.11, D is not necessarely a K-derivation. For instance, let X, Y, Z
be indeterminates over Q, K = Q(X) and R = K[Y, Z]/(Y 2). The derivation Y ∂

∂X
+ ∂

∂Z

of K[Y, Z] maps the ideal (Y 2) into itself and so determines a derivation D : R → R.

Then D and R satisfy the hypothesis of 2.11 but D is not a K-derivation.

3. Family of birational morphisms determined by a preslice

Let B = k[3] where k is an algebraically closed field of characteristic zero.

Throughout this section we fix a pair (D, s) where D : B → B is an irreducible
locally nilpotent derivation and s ∈ B is a preslice of D. This pair determines a family
(fλ)λ∈k of morphisms which we define in 3.1. The purpose of this section is to study
the properties of (fλ)λ∈k.

3.1. Definition. Let A = ker D and let Q : Spec B → Spec A be the morphism
determined by A ↪→ B. For each λ ∈ k, consider the closed subscheme Sλ of Spec B =

A3 determined by the ideal (s − λ)B of B and define fλ : Sλ → Spec A to be the

composite Sλ ↪→ Spec B
Q
−→ Spec A. Recall that Spec A = A2, by 2.2.

3.2. Lemma. For general λ ∈ k, s − λ is irreducible in B.

Proof. Let A = ker D and ϕ = Ds ∈ A \ {0}, and consider the prime factorization

ϕ =
∏N

i=1 pei

i of ϕ in A, where the ei are positive integers and the pi are prime elements

of A no two of which are associates. Suppose that λ1, . . . , λn are distinct elements of k

such that s−λi is reducible for each i. Then (for each i) we have s−λi = aisi for some
ai, si ∈ B\k satisfying degD(ai) ≤ degD(si). As 1 = degD(s−λi) = degD(ai)+degD(si),

we have degD(ai) = 0 and hence ai ∈ A \ k. Thus ϕ = D(s − λi) = aiD(si) shows
that ai | ϕ. Moreover, if i 6= j then gcd(ai, aj) = 1 since aisi − ajsj = λj − λi ∈ k∗.
Thus a1, . . . , an ∈ A \ k are pairwise relatively prime divisors of ϕ and consequently

n ≤ N . �

3.3. Proposition. Let {Q1, . . . , Qm} be a finite set of closed points of Spec A. For

general λ ∈ k, the morphism fλ : Sλ → Spec A (cf. 3.1) has the following properties.

(a) Sλ is a nonsingular irreducible affine surface

(b) fλ : Sλ → Spec A is a birational morphism
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(c) the missing curves of fλ are precisely the irreducible components of the closed
subset V (ϕ) of Spec A, where ϕ = Ds

(d) no element of {Q1, . . . , Qm} is a fundamental point of fλ.

Proof. By 3.2, Sλ is an irreducible and reduced affine surface; since chark = 0, the
general fibers of s : A3 → A1 are smooth and assertion (a) is clear. We show that

assertions (b) and (c) hold for any λ ∈ k satisfying the two conditions:

s − λ is irreducible(6)

no irreducible component of Fix(D) is included in Sλ.(7)

Fix λ satisfying these conditions. By 2.1 we have B ⊆ Aϕ[s]. As Aϕ[s] = (Aϕ)[1], we
may consider the Aϕ-homomorphism eλ : Aϕ[s] → Aϕ which maps s to λ. By (6), the

kernel of the composite B ↪→ Aϕ[s]
eλ−→ Aϕ is (s − λ)B so we have the commutative

diagram:

A
� � // B

� � //

��

Aϕ[s]

eλ

��
B/(s − λ) // Aϕ

where the composite homomorphism from A to Aϕ is the inclusion map. So we have
A ⊆ B/(s − λ) ⊆ Aϕ, from which we obtain

Sλ
fλ−−→ Spec A is birational and Spec(A) \ im(fλ) ⊆ VA(ϕ).

As the union of the missing curves is (by definition) the closure of Spec(A) \ im(fλ),
all missing curves are included in VA(ϕ). Let P ∈ A be an irreducible factor of ϕ and
consider the curve C = VA(P ) in Spec A. To prove (c), there remains to show:

(8) C is a missing curve of fλ.

Consider the ideal I = (P, s−λ)B of B and note that f−1
λ (C) = VB(I), where we regard

f−1
λ (C) as a subset of Spec B via the inclusions f−1

λ (C) ⊂ Sλ ⊂ Spec B. If I = B then
f−1

λ (C) = ∅, so (8) is proved. So from now-on we may assume that I 6= B. As A is

factorially closed in B (cf. 2.1), P is irreducible in B. Thus VB(P ) and VB(s − λ) are
distinct irreducible surfaces in Spec B = A3 and it follows that VB(P, s − λ) has pure
dimension one; so each one of the minimal prime over ideals p1, . . . , pn of I (in B) has

height 2.
If for some i we have D(B) ⊆ pi then VB(pi) ⊆ Fix(D); as VB(pi) is a curve and

Fix(D) has dimension at most one (because D is irreducible, cf. 2.9), it follows that

VB(pi) is an irreducible component of Fix(D); as pi ⊇ I ⊇ (s − λ)B, we obtain
VB(pi) ⊂ Sλ, which contradicts (7). So D(B) 6⊆ pi, i.e., for each i we have

(9) dim(B/pi) = 1 and D(B) 6⊆ pi.

Note that D maps the ideal I into itself. Indeed, if b, b′ ∈ B then

D(Pb + (s − λ)b′) = PD(b) + b′D(s − λ) + (s − λ)D(b′)
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belongs to I = (P, s − λ)B because D(s − λ) = D(s) = ϕ ∈ PB. So D determines a
locally nilpotent derivation D̄ : R → R, where R = B/I, and (by (9)) for each minimal
prime ideal q of R we have

dim(R/q) = 1 and D̄(R) 6⊆ q.

By 2.11, it follows that each element of ker D̄ is algebraic over k; if we write A = k[u, v],
then ū and v̄ are algebraic over k (where for b ∈ B, b̄ = b + I ∈ R); so there exist
α(T ), β(T ) ∈ k[T ] \ {0} such that α(u), β(v) ∈ I. Then

f−1
λ (C) = VB(I) ⊆ VB(α(u), β(v)) = Q

−1
(

VA(α(u), β(v))
)

and consequently fλ

(

f−1
λ (C)

)

is included in the finite set VA(α(u), β(v)). This proves (8),
so (c) is proved.

Consider the closed subset Γ = Q
−1({Q1, . . . , Qm}) of Spec B and note that the set

Λ =
{

λ ∈ k | Sλ contains an irreducible component of Γ
}

is finite. Let λ ∈ k \Λ. As

Γ is a finite union of irreducible curves by 2.6, f−1
λ ({Q1, . . . , Qm}) = Sλ ∩ Γ is a finite

set and consequently no fundamental point of fλ belongs to {Q1, . . . , Qm}. �

4. Weakly basic elements of k[3]

In this section B = k[3] where k is any field of characteristic zero.
It is convenient to introduce the following term:

4.1. Definition. An element f ∈ B is weakly basic1 if there exist infinitely many λ ∈ k

such that f −λ is an irreducible element of B and such that the ring Bλ = B/(f −λ)B
satisfies ML(Bλ) = k.

In the above definition the symbol ML(R) stands for the Makar-Limanov invariant

of the ring R, i.e., ML(R) =
⋂

D∈lnd(R)

ker(D).

In the present section we consider the situation where a weakly basic element of B
is a preslice of a locally nilpotent derivation. Noting that all variables of B are weakly
basic, it will then be interesting to consider the special case where a variable of B is a
preslice; this special case is studied in the next section.

4.2. Theorem. Let D : B → B be an irreducible locally nilpotent derivation and s ∈ B
such that Ds 6= 0 and D2s = 0. If s is a weakly basic element of B then there exist

X, Y, Z such that

B = k[X, Y, Z], DX = 0 and Ds ∈ k[X].

Proof. We first consider the case where k is algebraically closed. Let A = ker D and, for

each λ ∈ k, let Bλ = B/(s − λ). Consider Sλ
∼= Spec Bλ and fλ : Sλ → Spec A defined

in 3.1. Let C1, . . . , Cq be the distinct irreducible components of VA(Ds) ⊂ Spec A.
Note that if q = 0 then Ds ∈ k∗ so for any X, Y satisfying A = k[X, Y ] we have

B = k[X, Y, s] by 2.1, so the desired conclusion follows (with Z = s). From now-on,

1See Remark 4.3.
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assume that q > 0. Let E = {Q1, . . . , Qm} be the finite set of closed points of Spec A
which consists of all singular points of each Ci and of all intersection points Ci ∩ Cj

(i 6= j). By 3.3, the following conditions hold for general λ ∈ k:

Sλ is a smooth irreducible surface and fλ : Sλ → Spec A is a birational mor-
phism

(10)

C1, . . . , Cq are the missing curves of fλ(11)

no fundamental point of fλ belongs to E.(12)

Since s is a weakly basic element of B, there exist infinitely many λ ∈ k which satisfy

all of (10–12) and moreover ML(Bλ) = k. For a smooth affine surface S = Spec(R)
over k, it is well-known that the condition ML(R) = k implies that S is completable

by a rational zigzag (cf. for instance [8]). Thus there exist infinitely many λ ∈ k which
satisfy all of (10–12) and moreover:

(13) Sλ is completable by a rational zigzag.

For such a λ, 1.6 implies that E is included in the set of fundamental points of fλ; by
(12), it follows that E = ∅, i.e., the curves C1, . . . , Cq are smooth and pairwise disjoint.

Result 1.6 also implies that each Cj is a rational curve with one place at infinity, i.e.,
Cj is an affine line; let u1, . . . , uq be irreducible elements of A such that Cj = VA(uj),
then each uj is a variable of A by the Abhyankar-Moh-Suzuki Theorem. Write X = u1

and choose V such that A = k[X, V ].
We claim that uj ∈ k[X] for all j = 1, . . . , q. Indeed, let j ∈ {2, . . . , q} and consider

uj = P (X, V ) ∈ k[X, V ]. As VA(X, P (X, V )) = C1 ∩ Cj = ∅, we have P (0, V ) =
µ ∈ k∗. As X divides P (X, V ) − P (0, V ) = uj − µ (which is irreducible), we have
uj ∈ k[X] (for each j). Since Ds = c

∏q
j=1 u

ej

j for some integers ej > 0 and some

c ∈ k∗, Ds ∈ k[X]. We have shown that if k is algebraically closed then:

(14) there exists a variable X of ker D = k[2] such that Ds ∈ k[X] \ {0}.

Now drop the assumption that k is algebraically closed and let k̄ be an algebraic

closure of k. Let B̄ = k̄ ⊗k B = k̄[3] and let D̄ : B̄ → B̄ be the extension of D. It is
well-known that D̄ is an irreducible locally nilpotent derivation of B̄ and (obviously)

D̄(s) 6= 0 and D̄2(s) = 0. By 3.2, s−λ is irreducible in B̄ for almost all λ ∈ k̄, so there
exist infinitely many λ ∈ k such that s−λ is irreducible in B̄ and ML(B/(s−λ)) = k.
As k̄⊗k B/(s− λ) ∼= B̄/(s− λ), it follows that ML(B̄/(s− λ)) = k̄, i.e., s is a weakly

basic element of B̄. Then s ∈ B̄ and D̄ satisfy the hypothesis of 4.2, so (14) implies
that there exists a variable u of ker D̄ = k̄[2] such that Ds = D̄s ∈ k̄[u] \ {0}. As
ker D̄ = k̄ ⊗k ker D we may apply the following fact, whose proof is left to the reader:

Let K ⊆ L be fields of characteristic zero, X, Y indeterminates over L
and ϕ ∈ K[X, Y ] ⊆ L[X, Y ]. If ϕ ∈ L[u] for some variable u of L[X, Y ],

then ϕ ∈ K[u′] for some variable u′ of K[X, Y ].

This implies that there exists a variable X of ker D = k[2] such that Ds ∈ k[X] \ {0}.

Then X is a variable of B by 2.5, so the desired conclusion follows. �
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4.3. Remark. One can also define a notion of a “basic element of B”, as follows. First
note the following fact, due to Freudenburg and this author:

Suppose that A, A′ are distinct elements of klnd(B) such that A∩A′ 6=
k. Then A ∩ A′ = k[1], A = (A ∩ A′)[1] and A′ = (A ∩ A′)[1].

It is then natural to ask: which polynomials f ∈ B are such that k[f ] = A ∩ A′ for
some A, A′ ∈ klnd(B)? We give a name to these polynomials:

An element f ∈ B is said to be basic if there exist A, A′ ∈ klnd(B)
such that A ∩ A′ = k[f ].

It can be shown that basic elements are weakly basic; the converse is not known, but
we don’t expect it to be true. It can also be shown that the element s in Theorem 4.2

must be basic, but is not necessarely a variable of B.
Basic elements were studied in [5] under the assumption that k is algebraically closed.

See also [6] for related results.

5. Triangular derivations of k[3]

We continue to assume that B = k[3] where k is any field of characteristic zero.

5.1. Theorem. Let D : B → B be an irreducible locally nilpotent derivation and

assume that some variable Y of B satisfies DY 6= 0 and D2Y = 0. Then there exist
X, Z such that

B = k[X, Y, Z], DX = 0, DY ∈ k[X], DZ ∈ k[X, Y ].

Proof. As Y is a variable of B, and hence a weakly basic element of B, result 4.2 implies

that there exists a variable X of B such that DY ∈ k[X] and DX = 0. Then (2.5) X
is also a variable of ker D, so:

DY ∈ k[X] \ {0} for some variable X of ker D.

Then 2.4 implies that B = k[X, Y ][1], so there exists Z such that B = k[X, Y, Z]. As

is well-known, the fact that D is locally nilpotent and maps k[X, Y ] into itself implies
that DZ ∈ k[X, Y ], which proves the assertion. �

Several authors have studied locally nilpotent derivations D of k[X1, . . . , Xn] = k[n]

satisfying D2(Xi) = 0 for all i ∈ {1, . . . , m} ⊆ {1, . . . , n}. Theorem 5.1 settles the case
(m, n) = (1, 3) of that question. The cases (m, n) = (2, 3), (3, 3) are described in [19].
Also note that 5.1 is an improvement of [4, 3.9], whose proof depended heavily on the
extra hypotheses of homogeneity. Theorem 5.1 immediately leads to:

5.2. Corollary. For an irreducible locally nilpotent derivation D : B → B, the following
conditions are equivalent:

(a) D is triangular
(b) some variable V of B satisfies DV 6= 0 and D2V = 0.



12 DANIEL DAIGLE

Proof. By 5.1, (b) implies (a). Conversely, if (a) holds then there exists a triple
(X, Y, Z) satisfying B = k[X, Y, Z], DX ∈ k, DY ∈ k[X] and DZ ∈ k[X, Y ]. If
DX 6= 0 (resp. DX = 0 6= DY , DX = 0 = DY ) then (b) is satisfied with V = X

(resp. V = Y , V = Z). �
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