
POLYNOMIALS f(X, Y, Z) OF LOW LND-DEGREE

DANIEL DAIGLE

Abstract. Let B be the polynomial ring in three variables over an algebraically
closed field k of characteristic zero. We give a necessary condition that a polynomial
f ∈ B must satisfy if there exists a nonzero locally nilpotent derivation D : B → B

such that D2(f) = 0. In the case f = Xa +Y b +Zc, we determine the values of a, b, c

for which such a derivation exists.

To my teacher, Peter Russell.

1. Introduction

Let R be an integral domain of characteristic zero. A derivation D : R → R is
locally nilpotent if for each x ∈ R there exists n > 0 such that Dn(x) = 0. We use the
notations

lnd(R) = set of all locally nilpotent derivations D : R→ R

klnd(R) =
{

ker(D) | D ∈ lnd(R) and D 6= 0
}

where ker(D) =
{
x ∈ R | D(x) = 0

}
.

We say that R is rigid if klnd(R) = ∅ (i.e., if lnd(R) = {0}).
Assume that R is not rigid and consider D ∈ lnd(R) \ {0}. If f ∈ R \ {0}, define

degD(f) to be the least i ∈ N satisfying Di+1(f) = 0; also define degD(0) = −∞.
Then it is well-known that degD : R → N ∪ {−∞} is a degree function on R, i.e., for
all f, g ∈ R there holds: degD(f) = −∞ ⇔ f = 0, degD(fg) = degD(f) + degD(g)
and degD(f + g) ≤ max(degD(f), degD(g)). Also well-known and easy to see is the
fact that two elements of lnd(R) \ {0} determine the same degree function if and only
if they have the same kernel. So each A ∈ klnd(R) determines a degree function
degA : R → N ∪ {−∞}. For f ∈ R, we have degA(f) ≤ 0 if and only if f ∈ A; if
degA(f) = 1, we call f a preslice of A (or a preslice of D, where D ∈ lnd(R) is such
that kerD = A). Discussions between this author and Gene Freudenburg led to the
idea that one should consider the function

lndeg : R→ N ∪ {−∞}, lndeg(f) = min
{

degA(f) | A ∈ klnd(R)
}
,

and that it would be interesting to characterize the elements f ∈ R which satisfy

lndeg(f) ≤ 1,
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or equivalently,

D2(f) = 0 for some D ∈ lnd(R) \ {0}.
We call lndeg(f) the “LND-degree” of f , even though lndeg is not a degree function.

Consider the polynomial ring B = k[X, Y, Z], where k is an algebraically closed field
of characteristic zero. Then Theorem 3.11, below, gives a necessary condition that
f ∈ B must satisfy if lndeg(f) ≤ 1. That result is one of the tools used in Section 4 for
answering the following question, posed to this author by Freudenburg: Let f = Xa +
Y b +Zc ∈ B = k[X, Y, Z]; for which a, b, c does there exist D ∈ lnd(B)\{0} satisfying
D2(f) = 0? Corollary 4.8 gives the answer. Freudenburg’s motivation for asking this
question is the fact that its answer, combined with certain results of Freudenburg and
Moser-Jauslin, implies rigidity of the integral domain k[X, Y, Z, T ]/(Xa+Y b+Zc+T d)
for certain values of a, b, c, d.

Conventions. All rings are commutative and have a unity. The set of units of a ring R
is denotedR∗. If r ∈ R, we denote byRr the localization S−1R where S = {1, r, r2, . . . }.
If R is an integral domain, FracR is its field of fractions.

If A is a subring of a ring B then the notation B = A[n] means that B is isomorphic as
an A-algebra to the polynomial ring in n variables over A. If K/k is a field extension,
we write K = k(n) to indicate that K is a purely transcendental extension of k, of
transcendence degree n.

2. Gradings and homogeneous derivations

In this section we recall some notations, definitions and known facts concerning
gradings and homogeneous derivations.

Let R be an integral domain of characteristic zero and let g be a Z-grading of R,
with notation R =

⊕
i∈ZRi. A derivation D : R→ R is g-homogeneous if there exists

d ∈ Z satisfying D(Ri) ⊆ Ri+d for all i ∈ Z. We write

lnd(R, g) =
{
D ∈ lnd(R) | D is g-homogeneous

}
,

klnd(R, g) =
{

ker(D) | D ∈ lnd(R, g) and D 6= 0
}
.

Note that if A ∈ klnd(R, g) then A =
⊕

i∈ZAi where Ai = Ri ∩ A, i.e., A inherits a
grading from (R, g).

We often write “homogeneous” when we mean g-homogeneous (i.e., homogeneous
with respect to g), and “deg(f)” when we mean degg(f). We observe:

2.1. Lemma. Let R be an integral domain and a finitely generated algebra over a field
k of characteristic zero, and assume that R is not rigid. For any Z-grading g of R, the
following hold.

(1) klnd(R, g) 6= ∅
(2) For each A ∈ klnd(R), there exists A ∈ klnd(R, g) satisfying

degA f̄ ≤ degA f for all f ∈ R,
where f̄ stands for the highest g-homogeneous component of f .
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(3) For any g-homogeneous h ∈ R,

lndeg(h) = min
{

degA(h) | A ∈ klnd(R, g)
}
.

In particular, the following conditions are equivalent:
• there exists D ∈ lnd(R) \ {0} satisfying D2(h) = 0
• there exists D ∈ lnd(R, g) \ {0} satisfying D2(h) = 0.

Proof. Assertions (1) and (3) follow from (2), and (2) follows from the well-known fact
that, given D ∈ lnd(R) \ {0}, the “homogeneization” D of D is a nonzero element of
lnd(R, g) which satisfies degD f̄ ≤ degD f for all f ∈ R. �

We are particularly interested in Z-gradings of polynomial rings. The following
definitions and facts (2.2 and 2.3) can be found in Chapter 2 of [Kol10].

2.2. Let k be a field of characteristic zero, B = k[n] a polynomial ring over k and
g a Z-grading of B. A homogeneous coordinate system of B is an ordered n-tuple
γ = (X1, . . . , Xn) of elements of B such that B = k[X1, . . . , Xn] and such that each Xi

is homogeneous (with respect to g). If there exists a homogeneous coordinate system
of B, we say that the grading g is coordinatizable.

Fix a Z-grading g of B which is coordinatizable and nontrivial. Then each homo-
geneous coordinate system γ = (X1, . . . , Xn) of B determines an n-tuple α(g, γ) =
(α1, . . . , αn), as follows: first, let di = deg(Xi)/ gcd(deg(X1), . . . , deg(Xn)), 1 ≤ i ≤ n;
then,

αi = gcd
{
dj | j ∈ {1, . . . , n} \ {i}

}
.

Note that α1, . . . , αn are pairwise relatively prime natural numbers. It can be shown
that, up to permutation, the n-tuples (deg(X1), . . . , deg(Xn)) and α(g, γ) are indepen-
dent of the choice of γ. So the cardinality of the set

{
i | αi 6= 1

}
is completely

determined by g; this cardinality is called the type of g. We also define the type of
the trivial grading to be zero.1 So each coordinatizable grading g of B has a type, and
type g ∈ {0, 1, . . . , n}.

Also define d(A) = gcd
{

deg(h) | h is a nonzero homogeneous element of A
}

for
each A ∈ klnd(B, g).

2.3. Theorem (Kolhatkar). Let k be a field of characteristic zero, B = k[n] a poly-
nomial ring, and g a Z-grading of B which is coordinatizable and nontrivial. Let γ =
(X1, . . . , Xn) be a homogeneous coordinate system of B. Define α(g, γ) = (α1, . . . , αn)
and type(g) as in 2.2.

(1)
{
d(A) | A ∈ klnd(B, g)

}
= {α1, . . . , αn}

(2) Suppose that A ∈ klnd(B, g) and i ∈ {1, . . . , n} are such that d(A) = αi 6= 1.
Then the set of homogeneous prime elements h of B satisfying degA(h) = 1 is
equal to

{
λXi | λ ∈ k∗

}
.

1The trivial grading is of course not the only one of type 0. For nontrivial g, we have type(g) = 0
if and only if d1, . . . , dn are (n− 1)-wise relatively prime.
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(3) For each A ∈ klnd(B, g) we have
{
Xi | i satisfies αi /∈ {1, d(A)}

}
⊂ A, so

in particular |{X1, . . . , Xn} ∩ A| ≥ type(g)− 1.

3. A criterion

The aim of this section is to prove Theorem 3.11. We first recall some known facts.

3.1. Let R be a domain containing Q, D : R→ R a nonzero locally nilpotent derivation
and A = kerD. The following facts are well-known, see for instance [Fre06] or [vdE00].

(a) A is a factorially closed subring of R (that is, the conditions x, y ∈ R \ {0} and
xy ∈ A imply x, y ∈ A). Consequently, A∗ = R∗; if k is any field contained in
R then D is a k-derivation; A is algebraically closed in R (i.e., each element of
R which is a root of a nonzero polynomial f(T ) ∈ A[T ] belongs to A); if R is a
UFD then so is A.

(b) If s ∈ R is any preslice of D, and if we write a = Ds, then Ra = Aa[s] = Aa
[1].

(c) The transcendence degree of R over A is 1.

We also need the following consequence of a result of Miyanishi [Miy85]:

3.2. Let B = k[3] where k be a field of characteristic zero.

(a) If D ∈ lnd(B) \ {0}, then kerD = k[2].
(b) If D ∈ lnd(B, g) \ {0} where g is a Z-grading of B, then kerD = k[f, g] for

some g-homogeneous elements f, g ∈ B.

3.3. Lemma. Let R be a UFD containing Q and let g be a nontrivial Z-grading on R
(say R =

⊕
i∈ZRi). If there exists D ∈ lnd(R, g) such that the grading on ker(D) is

trivial, then R = R0[v] = R
[1]
0 for some homogeneous element v ∈ R of nonzero degree.

Proof. Note that D 6= 0; so R has transcendence degree 1 over A = kerD. As A ⊆
R0 ⊆ R and R is not algebraic over R0, R0 is algebraic over A; as A is algebraically
closed in R,

A = R0.

Pick a homogeneous preslice s′ ∈ R ofD. Note that R∗ ⊂ A, so s′ /∈ R∗; consequently s′

is a (nonempty) product of prime elements. As degD(s′) = 1, some prime factor of s′ is
a preslice of D. So there exists a preslice s ∈ R of D which is prime and homogeneous.

Let α = D(s) ∈ A \ {0}, then Rα = Aα[s] = A
[1]
α . If r ∈ R \ {0} is homogeneous then

αNr =
∑m

i=0 ais
i for some N,m ≥ 0, ai ∈ A = R0. Because αNr is homogeneous, it

follows that αNr = ais
i for some i ≥ 0. Then si | αNr and gcd(si, α) = 1 imply that

si | r, so r = asi for some a ∈ R0. We have shown that R = R0[s] = R
[1]
0 . �

3.4. Definition. Let R = k[X1, . . . , Xn] = k[n], where n ≥ 2 and k is a field of
characteristic zero. Given (a1, . . . , an) ∈ Zn, let g(a1, . . . , an) denote the Z-grading of
R obtained by stipulating that Xi is homogeneous of degree ai. Note that g(a1, . . . , an)
is a coordinatizable grading and that (X1, . . . , Xn) is a homogeneous coordinate system
(cf. 2.2). We say that g(a1, . . . , an) is an admissible grading if

{
i | ai 6= 0

}
has

cardinality at least 2.
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3.5. Lemma. Let g = g(a1, . . . , an) be an admissible Z-grading of R = k[X1, . . . , Xn] =
k[n], where n ≥ 2 and k is a field of characteristic zero. Then for each D ∈ lnd(R, g),
the grading on ker(D) is nontrivial.

Proof. By contradiction, suppose that there existsD ∈ lnd(R, g) such that the grading

on ker(D) is trivial. Write R =
⊕

i∈ZRi. It follows from 3.3 that R = R
[1]
0 , so in

particular (i) R0 is factorially closed in R, and (ii) R has transcendence degree 1 over
R0. By (i), all nonzero ai have the same sign; then, by (ii), only one ai is nonzero so g

is not admissible. �

Until the end of this section, we assume that k is an algebraically closed field of
characteristic zero and B = k[X, Y, Z] = k[3]. The following notion is needed in the
proof of 3.9:

3.6. Definition. Let U be a nonsingular algebraic surface over k. We say that U is
completable by rational curves if there exists an open immersion U ↪→ Ω such that Ω
is a nonsingular projective surface and Ω \ U is a union of rational curves.

3.7. Remark. Let U be an open subset of a (possibly singular) surface S and assume
that U is nonsingular and completable by rational curves. If C ⊂ S is a curve lying in
the complement of U then C is a rational curve.

3.8. Notations. Let R be an N-graded ring and h ∈ R a homogeneous element. Then
we write V (h) for the closed subset

{
p ∈ SpecR | h ∈ p

}
of SpecR, V+(h) for the

closed subset
{

p ∈ ProjR | h ∈ p
}

of ProjR and D+(h) = Proj(R) \ V+(h). As
is well-known, if deg(h) > 0 then D+(h) ∼= SpecR(h) where R(h) is the component of
degree zero of the Z-graded localized ring Rh. If (a, b, c) ∈ N3\{(0, 0, 0)} and k[X, Y, Z]
is equipped with the N-grading g(a, b, c), then Projk[X, Y, Z] is denoted P(a, b, c).

3.9. Lemma. Let (a, b, c) ∈ N3 be such that at most one of a, b, c is zero, and consider
the N-grading g = g(a, b, c) of B = k[X, Y, Z]. Let h be a nonconstant homogeneous
element of B and consider the closed set V+(h) ⊂ P(a, b, c). If D2(h) = 0 for some
D ∈ lnd(B, g) \ {0}, then each irreducible component of V+(h) is a rational curve.

Proof. We first consider the case where D(h) = 0. To prove that V+(h) ⊂ P(a, b, c) is
a union of rational curves, we may assume that gcd(a, b, c) = 1. Let A = ker(D), then
(cf. 3.2) A = k[f, g] = k[2] where f, g are homogeneous elements of B. By 3.5, the
grading on A is nontrivial; so the integer d = gcd(deg f, deg g) is nonzero and hence
satisfies d ≥ 1, which implies (by [Dai98, 3.10]) that B(fg) = (A(fg))

[1]. So for some v
transcendental over A(fg) we have

(1) B(fg) = (A(fg))[v] = (A(fg))
[1].

Define p = (deg f)/d, q = (deg g)/d and ξ = f q/gp; then A(fg) = k[ξ, ξ−1]. As h is a
homogeneous element of A, we have h = λf rgs

∏m
k=1(f

q − λkg
p) for some r, s,m ∈ N
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and λ, λk ∈ k∗, so we may write fgh = λf igj
∏m

k=1(ξ − λk) (where i, j ∈ N). Let us
record this as

fgh = f igjϕ for some i, j ∈ N and ϕ ∈ k[ξ] \ {0} ⊆ A(fg) \ {0}.
This implies that A(fgh) = A(fg)[1/ϕ] and B(fgh) = B(fg)[1/ϕ] so, by (1),

B(fgh) = B(fg)[1/ϕ] = A(fg)[v, 1/ϕ] = A(fgh)[v].

Note that v is transcendental over A(fgh), because it is transcendental over A(fg) and
A(fgh) = A(fg)[1/ϕ] is a localization of A(fg). Consequently,

B(fgh) = (A(fgh))
[1] = k[ξ, ξ−1, ϕ−1][1].

We have deg(fgh) > 0, because the grading on A is not trivial. It follows that the
open subset D+(fgh) of P(a, b, c) is isomorphic to SpecB(fgh), which is isomorphic
to C0 × A1

k, where C0 = Speck[ξ, ξ−1, ϕ(ξ)−1] is an affine line minus finitely many
points; so D+(fgh) is isomorphic to P1

k × P1
k minus finitely many projective lines; in

particular, D+(fgh) is completable by rational curves. If C ⊂ P(a, b, c) is an irreducible
component of V+(h), then C lies in the complement of D+(fgh) and hence is a rational
curve by 3.7. Thus V+(h) is a union of rational curves.

Next, we consider the case whereD(h) 6= 0 andD2(h) = 0. Noting that degD(h) = 1,
we see that h = h0h1 where h0 ∈ A, h1 is an irreducible element of B, D(h1) 6= 0 and
D2(h1) = 0, and of course h0, h1 are homogeneous. The first part of the proof implies
that V+(h0) ⊂ P(a, b, c) is a union of rational curves. It is well-known that if s is an
irreducible element of B satisfying ∆2(s) = 0 and ∆(s) 6= 0 for some ∆ ∈ lnd(B), then
V (s) ⊂ Spec(B) is a rational surface;2 thus V (h1) ⊂ Spec(B) is a rational surface. As
V (h1) ⊂ Spec(B) is a cone over V+(h1) ⊂ P(a, b, c), it is birational to V+(h1)× P1; so
V+(h1) is a rational curve. So V+(h) = V+(h0)∪V+(h1) is a union of rational curves. �

3.10. Notation. Let f ∈ B = k[X, Y, Z] be a nonconstant polynomial. Given (a, b, c) ∈
N3\{(0, 0, 0)}, let Γ(f ; a, b, c) = V+(h) ⊂ P(a, b, c) where h denotes the highest g(a, b, c)-
homogeneous component of f .

3.11. Theorem. Let B = k[X, Y, Z] = k[3] where k is an algebraically closed field of
characteristic zero, and let f ∈ B be a nonconstant polynomial such that D2(f) = 0
for some D ∈ lnd(B) \ {0}. Then, for each choice of (a, b, c) ∈ N3 such that at most
one of a, b, c is zero, each irreducible component of Γ(f ; a, b, c) is a rational curve.

Proof. Let (a, b, c) be as in the statement, let g = g(a, b, c) and let h be the highest
g-homogeneous component of f . If D ∈ lnd(B) \ {0} satisfies D2(f) = 0, then by
2.1 there exists D̃ ∈ lnd(B, g) \ {0} satisfying D̃2(h) = 0, so the result follows from
3.9. �

2The composite V (s) ↪→ Spec B → Spec(ker∆) = A2
k is a birational morphism.
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4. An application

The aim of this section is to prove that P (3) is true, where P (n) is the following
assertion:

4.1. Statement P (n): Let k be a field of characteristic zero, B = k[X1, . . . , Xn] =
k[n] and f = Xa1

1 + · · ·+Xan
n ∈ B where (a1, . . . , an) ∈ Nn. If min(a1, . . . , an) ≥ 2 and

at most one ai is equal to 2, then no element D of lnd(B) \ {0} satisfies D2(f) = 0.

To be precise, “P (n) is true” means that the assertion is true for all fields k of
characteristic zero. However, we observe that it’s enough to prove P (n) under the
assumption that k is algebraically closed, so we are free to make this assumption
whenever it is convenient. It is trivial that P (1) is true. We prove P (2) and P (3)
below, and also show that if P (n− 1) is true then P (n) is at least partially true.

4.2. Let k be a field of characteristic zero and n ≥ 2. Let the notation be as in 4.1
and suppose that min(a1, . . . , an) ≥ 2 and that at most one ai is equal to 2. Let
M = lcm(a1, . . . , an), let a∗i = M/ai (1 ≤ i ≤ n) and note that gcd(a∗1, . . . , a

∗
n) = 1.

Let g be the N-grading of B defined by stipulating that Xi is homogeneous of degree
a∗i , and note that f is g-homogeneous of degree M . Thanks to 2.1 we know that, in
order to prove P (n),

it’s enough to show that no D ∈ lnd(B, g) \ {0} satisfies D2(f) = 0.

Observe that g is a coordinatizable grading of B and that γ = (X1, . . . , Xn) is a
homogeneous coordinate system of B; so the concepts of 2.2 can be used here. In
particular, we have the n-tuple α(g, γ) = (α1, . . . , αn), defined by

αi = gcd
{
a∗j | j ∈ {1, . . . , n} \ {i}

}
,

and we have type g ∈ {0, 1, . . . , n} defined by type(g) = |
{
i | αi 6= 1

}
|. It is convenient

to define
cotype(a1, . . . , an) = type g.

4.3. Lemma. Let n ≥ 2 and assume that P (n−1) is true. Then the following assertions
are also true (where the notations and assumptions are as in 4.2):

(1) If D ∈ lnd(B) \ {0} satisfies D(Xi) = 0 for some i ∈ {1, . . . , n}, then
D2(f) 6= 0.

(2) P (n) is true for all (a1, . . . , an) satisfying cotype(a1, . . . , an) > 1.

Proof. Consider D ∈ lnd(B)\{0} satisfyingD(Xi) = 0 for some i ∈ {1, . . . , n}, and let
us show that D2(f) 6= 0. Without loss of generality, we may assume that D(Xn) = 0.
Let K = k(Xn), B = K[X1, . . . , Xn−1] = K [n−1] and F = Xa1

1 + · · · + X
an−1

n−1 ∈ B.
Since D(Xn) = 0, D extends to D ∈ lnd(B) \ {0}. If D2(f) = 0 then D2(f) = 0, so
D2(F ) = 0, which contradicts the assumption that P (n− 1) is true. So D2(f) 6= 0 and
assertion (1) is proved.

Suppose that cotype(a1, . . . , an) > 1. We have to show that D2(f) 6= 0 for all
D ∈ lnd(B, g) \ {0}, so let us consider such a D. By Theorem 2.3,

|{X1, . . . , Xn} ∩ kerD| ≥ type(g)− 1,
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and since type(g) − 1 = cotype(a1, . . . , an) − 1 > 0 we have D(Xi) = 0 for some i, so
we are done by the first assertion. �

4.4. Lemma. P (2) is true.

Proof. As we already noted, we may assume that k is algebraically closed. Let the
notations and assumptions be as in 4.2, with n = 2. In view of 4.3 (and since P (1)
is true), we may assume that cotype(a1, a2) ≤ 1. As α1 = a∗2 = M/a2 and α2 = a∗1 =
M/a1, this assumption implies that one of M/a1, M/a2 is equal to 1, so one of a1, a2

divides the other. Without loss of generality, we may assume that a1 | a2. Then for
some m ≥ 1 we have f = Xa1

1 + Xma1
2 =

∏a1

i=1 gi, where gi = X1 + λiX
m
2 for all

i = 1, . . . , a1, and where λ1, . . . , λa1 are distinct elements of k∗.
Now suppose that there exists D ∈ lnd(B, g) such that D2(f) = 0, and let A =

kerD. It is not possible to have degD(gi) = 0 (i.e., gi ∈ A) for two values of i, because
that would imply A = k[X1, X2], a contradiction. As 1 = degD(f) =

∑a1

i=1 degD(gi)
and a1 ≥ 2, it follows that a1 = 2 and that {degD(g1), degD(g2)} = {0, 1}. Then

1 = degD(g1 − g2) = degD

(
(X1 + λ1X

m
2 )− (X1 + λ2X

m
2 )

)
= m degD(X2),

so m = 1 and hence (a1, a2) = (2, 2), a contradiction. So D does not exist. �

4.5. Lemma. Let S be a nonsingular surface over an algebraically closed field k of
characteristic zero, let C ⊂ S be a curve and let P ∈ S be a point. Recall that the
completion of the local ring OS,P is isomorphic to k[[x, y]] = k[[2]] and suppose that the
local equation of C at P is of the form

xa + yb +
∑
i,j

cijx
iyj ∈ k[[x, y]],

where a, b ≥ 0 and where bi+ aj > ab for all i, j such that cij 6= 0. Then∑
Q

µ(Q)(µ(Q)− 1) = ab− a− b+ gcd(a, b),

where Q (in the left hand side) runs in the set of all singular points of C infinitely near
P , and where µ(Q) is the multiplicity of the singular point Q of C.

The above fact is well-known. Note that it remains valid when P /∈ C, in which case
the left-hand-side is the empty sum and the right-hand-side adds up to zero, because
min(a, b) = 0.

4.6. Lemma. Let k be an algebraically closed field of characteristic zero and consider
F = Y M +XN +Xn ∈ k[X,Y ] = k[2], where M ≥ 2 and N > n ≥ 0. Let C ⊂ A2

k be
the zero-set of F . Then C is rational if and only if one of the following conditions is
satisfied:

(a) F = Y 2 +X2k+2 +X2k, k ≥ 0
(b) F = Y M +XkM+1 +XkM , k ≥ 0, M ≥ 2
(c) F = Y M +XkM +XkM−1, k ≥ 1, M ≥ 2.
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Proof. The closure C̄ ⊂ P2 of C ⊂ A2 is the zero-set of the homogeneization F ∗ ∈
k[X, Y, Z] of F . We compute the geometric genus g of C̄.

Consider first the case where M < N . Then deg(F ) = N and F ∗ = Y MZN−M +
XN +XnZN−n, so the singular points of C̄ belong to {P0, P∞} where P0 = (0 : 0 : 1)
and P∞ = (0 : 1 : 0). The local equations f0 and f∞ of C̄ at P0 and P∞ respectively
are:

f0 = F = Y M +XN +Xn ∈ k[[X, Y ]], (a, b) = (M,n),

f∞ = F ∗(X, 1, Z) = ZN−M +XN +XnZN−n ∈ k[[X,Z]], (a, b) = (N,N −M),

where the pairs (a, b) of Lemma 4.5 are also indicated. Set d0 = gcd(M,n) and d∞ =
gcd(N,N −M) = gcd(M,N), then by 4.5 and the genus formula we get

2g = (N − 1)(N − 2)−
(
Mn−M − n+ d0

)
−

(
N(N −M)−N − (N −M) + d∞

)
= (M − 1)(N − n) + 2− d0 − d∞.

So, in the case where M < N , we obtain:

2g = (M − 1)(N − n) + 2− d0 − d∞, d0 = gcd(M,n), d∞ = gcd(M,N).(2)

We claim that (2) continues to be valid in the case where M ≥ N . Indeed, in this case
we have deg(F ) = M and F ∗ = Y M +XNZM−N +XnZM−n, so Sing(C̄) ⊆ {P0, P∞}
where P0 = (0 : 0 : 1) and P∞ = (1 : 0 : 0). The local equations f0 and f∞ of C̄ at P0

and P∞ respectively are:

f0 = F = Y M +XN +Xn ∈ k[[X, Y ]], (a, b) = (M,n),

f∞ = F ∗(1, Y, Z) = Y M + ZM−N + ZM−n ∈ k[[Y, Z]], (a, b) = (M,M −N),

where the pairs (a, b) of Lemma 4.5 are also indicated. Set d0 = gcd(M,n) and d∞ =
gcd(M,M −N) = gcd(M,N), then by 4.5 and the genus formula we get

2g = (M − 1)(M − 2)−
(
Mn−M − n+ d0

)
−

(
M(M −N)−M − (M −N) + d∞

)
= (M − 1)(N − n) + 2− d0 − d∞,

which is identical to (2) (and the values of d0 and d∞ also agree with (2)). So (2) is
valid in all cases.

Using (2), it is easy to check that if one of conditions (a–c) holds (see the statement
of the Lemma) then g = 0, so C is rational.

Conversely, suppose that g = 0; using (2), we show that one of conditions (a–c) must
hold. Note that d0, d∞ satisfy (in particular) d0 |M and d∞ |M , so max(d0, d∞) ≤M .

If N−n ≥ 3 then 0 = 2g ≥ 3(M−1)+2−d0−d∞ = (M−1)+(M−d0)+(M−d∞) ≥
M − 1, so M ≤ 1, a contradiction. So we must have N − n ∈ {1, 2}.

If N − n = 2 then 0 = 2g = 2(M − 1) + 2− d0− d∞ = (M − d0) + (M − d∞) implies
that d0 = M = d∞, which implies that M | n and M | N ; then M divides the number
N − n = 2, and since M ≥ 2 we get M = 2. As M = 2 divides n and N = n + 2,
condition (a) holds.
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If N − n = 1 then 0 = 2g = (M − 1) + 2 − d0 − d∞, so d0 + d∞ = M + 1. This
implies that max(d0, d∞) > M/2, so max(d0, d∞) = M . As one of d0, d∞ is equal to
M , we have M | n or M | N ; in the former case (b) holds, and in the latter case (c)
holds. �

4.7. Proposition. P (3) is true.

Proof. We may assume that k is algebraically closed. Let n = 3 and let the notations
and assumptions be as in 4.2. The first part of the proof consists in showing that if
(a1, a2, a3) satisfies the hypothesis of P (3) and cotype(a1, a2, a3) < 3, then one of the
following conditions must hold:3

(i) the curve C(a1,a2,a3) = V+(f) ⊂ P(a∗1, a
∗
2, a

∗
3) is not rational

(ii) cotype(a1, a2, a3) = 2
(iii) up to permutation, (a1, a2, a3) is (b, a, a) for some a ≥ 3 and b ≥ 2 such that

gcd(a, b) = 1.

Suppose that (a1, a2, a3) satisfies the hypothesis of P (3) and cotype(a1, a2, a3) < 3.
This condition on the cotype means that gcd(a∗i , a

∗
j) = 1 for some i, j ∈ {1, 2, 3}, so,

replacing if necessary (a1, a2, a3) by a permutation of it, we may arrange that

(3) gcd(a∗2, a
∗
3) = 1.

Observe that a∗2 | a3. Indeed, by definition of a∗i we have aia
∗
i = M for all i, where

M = lcm(a1, a2, a3). So a2a
∗
2 = a3a

∗
3, and we get a∗2 | a3 by (3). The integer a3/a

∗
2 =

a2/a
∗
3 plays a role in the analysis below, and it is convenient to give it a name. Define

ρ = a3/a
∗
2 = a2/a

∗
3 ∈ N \ {0}.

Then we note that

(4) (a1, a2, a3) = (a1, ρa
∗
3, ρa

∗
2) and M = ρa∗2a

∗
3.

By (3), we may choose r, s ∈ N \ {0} such that

(5) a∗2r − a∗3s = −1.

Consider the submodule W of Z3 defined by

W =
{

(i1, i2, i3) ∈ Z3 | a∗1i1 + a∗2i2 + a∗3i3 = 0
}

and the elements w1 = (1, ra∗1,−sa∗1) and w2 = (0, a∗3,−a∗2) of W . We claim that
{w1, w2} is a basis of the Z-module W . Linear independence is clear, so it suffices to
check that {w1, w2} generates W . Let w = (i1, i2, i3) ∈ W . As {w1, w2} is a basis of
the Q-vector space Q ⊗Z W , there exist q1, q2 ∈ Q such that w = q1w1 + q2w2. Then
q1 = i1 ∈ Z, so q2w2 = w − q1w1 ∈ Z3; it follows that q2a

∗
2 and q2a

∗
3 are integers, so

q2 ∈ Z by (3). So {w1, w2} is indeed a basis of W . Now define u, v ∈ B(X3) by

u = X1X
ra∗1
2 X

−sa∗1
3 and v = X

a∗3
2 X

−a∗2
3 .

3In fact this implication is also the proof of Corollary 4.9.
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Consider a monomial M = X i1
1 X

i2
2 X

i3
3 ∈ k[X±1

1 , X±1
2 , X±1

3 ] satisfying (i1, i2, i3) ∈ W ;
then we have (i1, i2, i3) = aw1 + bw2 for some a, b ∈ Z, so M = uavb ∈ k[u±1, v±1].
As each element of B(X3) is a linear combination (over k) of monomials X i1

1 X
i2
2 X

i3
3

satisfying (in particular) (i1, i2, i3) ∈ W , we have

(6) k[u, v] ⊆ B(X3) ⊆ k[u±1, v±1].

In particular, the elements Xa1
1 /X

a3
3 and Xa2

2 /X
a3
3 of B(X3) can be expressed in terms

of u, v as

(7)
Xa1

1

Xa3
3

=
ua1

va3r
and

Xa2
2

Xa3
3

= vρ.

As deg(X3) = a∗3 > 0, the open subset D+(X3) of P(a∗1, a
∗
2, a

∗
3) is isomorphic to

SpecB(X3) and a birational morphism β : D+(X3) → A2 is determined by the inclusion
k[u, v] ↪→ B(X3). The irreducible curve C(a1,a2,a3) ⊂ P(a∗1, a

∗
2, a

∗
3) meets the open set

D+(X3) and we may consider the closure Γ of β
(
C(a1,a2,a3) ∩D+(X3)

)
in A2. It follows

from (6) that C(a1,a2,a3) ∩D+(X3) is not contracted by β, so Γ ⊂ A2 is an irreducible
curve which is birational to C(a1,a2,a3). The equation of Γ can be obtained by dividing
Xa1

1 +Xa2
2 +Xa3

3 = 0 by Xa3
3 , using (7) and clearing denominators; this gives:

(8) Γ ⊂ A2 is the zero-set of the polynomial ua1 + va3r+ρ + va3r ∈ k[u, v].

In view of Lemma 4.6, if Γ is rational then one of the following conditions holds:

(a) a1 = 2, a3r is even and ρ = 2
(b) a1 | a3r and ρ = 1
(c) a1 | (a3r + ρ) and ρ = 1.

In case (a), we have a1 = 2 and ρ = 2, so (4) gives (a1, a2, a3) = (2, 2a∗3, 2a
∗
2) and

M = 2a∗2a
∗
3. Since at most one ai is equal to 2, it follows that min(a∗2, a

∗
3) > 1. As

a∗1 = M/a1 = a∗2a
∗
3, we have (a∗1, a

∗
2, a

∗
3) = (a∗2a

∗
3, a

∗
2, a

∗
3) and consequently (α1, α2, α3) =

(1, a∗3, a
∗
2). This implies that type g = 2, because min(a∗2, a

∗
3) > 1. So in case (a) we

have cotype(a1, a2, a3) = 2, i.e., condition (ii) holds.
If (b) or (c) holds then ρ = 1, so (4) gives (a1, a2, a3) = (a1, a

∗
3, a

∗
2) and M = a∗2a

∗
3.

Because min(a1, a2, a3) > 1, it follows that min(a∗2, a
∗
3) > 1. Also, “(b) or (c)” implies

that a1 divides one of the following numbers:

a3r = a∗2r = a∗3s− 1 or a3r + ρ = a3r + 1 = a∗2r + 1.

In the first (resp. second) case, a1 is relatively prime to a∗3 (resp. a∗2). As a1 divides
M = a∗2a

∗
3 and is relatively prime to one of a∗2, a

∗
3, it follows that a1 divides one of a∗2, a

∗
3.

Consider i, j such that {i, j} = {2, 3} and a1 | a∗i . Then a∗1 = M/a1 = a∗2a
∗
3/a1 =

(a∗i /a1)a
∗
j and consequently

α1 = gcd(a∗2, a
∗
3) = 1,

αi = gcd(a∗1, a
∗
j) = gcd

(
(a∗i /a1)a

∗
j , a

∗
j

)
= a∗j > 1,

αj = gcd(a∗1, a
∗
i ) = gcd

(
(a∗i /a1)a

∗
j , a

∗
i

)
= gcd

(
(a∗i /a1), a

∗
i

)
= a∗i /a1.

If a1 6= a∗i then αi 6= 1 and αj 6= 1, so type g = 2 and hence condition (ii) holds.
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If a1 = a∗i then (a1, a2, a3) = (a∗i , a
∗
3, a

∗
2), so condition (iii) holds.

We have shown that if (i) does not hold then (ii) or (iii) holds, so the first part of
the proof is complete.

To prove the Proposition, we have to show that noD ∈ lnd(B, g) satisfiesD2(f) = 0.
This follows from Lemma 3.9 or Theorem 3.11 in case (i), and from 4.3 and 4.4 in case
(ii). There only remains to show that D doesn’t exist in case (iii); for this, we use
Theorem 2.3 and some results in the classification of homogeneous locally nilpotent
derivations of k[3].

Assume that (a1, a2, a3) = (b, a, a) for some a ≥ 3 and b ≥ 2 such that gcd(a, b) = 1.
Then (a∗1, a

∗
2, a

∗
3) = (a, b, b), so the grading g is defined by deg(X1) = a and deg(X2) =

b = deg(X3). Also note that (α1, α2, α3) = (b, 1, 1), so type g = 1 and α1 = b 6= 1.

LetD ∈ lnd(B, g)\{0} and A = kerD. Let us show thatD2(f) 6= 0. By Lemma 4.3,
we may assume that X1 /∈ A.

By 2.3(1), we have d(A) ∈ {b, 1}. If d(A) = 1 then α1 = b /∈ {1, d(A)}, so X1 ∈ A
by 2.3(3), contradicting our assumption. So in fact we have d(A) = b = α1 6= 1.
Then 2.3(2) implies that the set of homogeneous prime elements h of B satisfying
degD(h) = 1 is equal to

{
λX1 | λ ∈ k∗

}
. As f 6= λX1, degD(f) 6= 1 and there

only remains to show that f /∈ A. For this we use the following facts, which follow
respectively from results 3.4.3 and 3.4.2 of [Dai07]:

(9) Let u, v be g-homogeneous elements of B such that k[X1, u, v] =
k[X1, X2, X3]. Then u, v ∈ k[X2, X3] are linearly independent lin-
ear forms.

(10) A = k[u, uev+ψ(u,X1)] for some pair (u, v) as in (9), some e ∈ N and
some ψ(u,X1) ∈ k[u,X1] such that uev + ψ(u,X1) is g-homogeneous
and irreducible.

Let us write A = k[u, θ], where θ = uev + ψ(u,X1). Note that deg(u) = b and
deg(θ) = (e + 1)b, while deg(f) = ab. By contradiction, assume that f ∈ A. As f
is an element of A which is both homogeneous and irreducible, one of the following
conditions must hold for some λ, µ ∈ k∗:

(a) f = λu
(b) f = λθ
(c) f = λue+1 + µθ

Condition (a) cannot hold because deg(f) 6= deg(u), so (b) or (c) holds, so e = a − 1
and f = λua + µθ for some λ, µ ∈ k. Setting X1 = 0 in this equality of polynomials
yields Xa

2 +Xa
3 = λua +µ(ua−1v+ψ(u, 0)), where ψ(u, 0) = νua for some ν ∈ k. Then

ua−1 | Xa
2 +Xa

3 ; as there can be no multiple factor in the prime factorization of Xa
2 +Xa

3 ,
we obtain a ≤ 2, which contradicts one of our assumptions. This contradiction shows
that f /∈ A, so the proof is complete. �

It is easy to see that if k is algebraically closed, n ≥ 3 and (a1, . . . , an) does not
satisfy the hypothesis of P (n) then lndeg(f) = 0. So the above result implies:
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4.8. Corollary. Let f = Xa1
1 +Xa2

2 +Xa3
3 ∈ B = k[X1, X2, X3] = k[3], where k is an

algebraically closed field of characteristic zero and (a1, a2, a3) ∈ N3. Then the following
are equivalent:

(a) lndeg(f) = 0
(b) lndeg(f) ≤ 1
(c) min(a1, a2, a3) ≤ 1 or |

{
i | ai = 2

}
| > 1.

4.9. Corollary. Let f = Xa1
1 +Xa2

2 +Xa3
3 ∈ B = k[X1, X2, X3] = k[3], where k is an

algebraically closed field of characteristic zero. Suppose:

(a) min(a1, a2, a3) ≥ 2 and at most one of a1, a2, a3 is equal to 2
(b) a1, a2, a3 are distinct or gcd(a1, a2, a3) > 1
(c) cotype(a1, a2, a3) ≤ 1.

Then the curve C(a1,a2,a3) = V+(f) ⊂ P(a∗1, a
∗
2, a

∗
3) is not rational. Moreover, if g is

any element of B satisfying degg(g) < degg(f) (where g is defined in 4.2), then no
D ∈ lnd(B) \ {0} satisfies D2(f + g) = 0.

Proof. Suppose that (a1, a2, a3) satisfies (a–c). Then, by the proof of Proposition 4.7,
one of the following conditions holds:

(i) the curve C(a1,a2,a3) is not rational
(ii) cotype(a1, a2, a3) = 2
(iii) up to permutation, (a1, a2, a3) is (b, a, a) for some a ≥ 3 and b ≥ 2 such that

gcd(a, b) = 1.

Condition (ii) does not hold by (c), and condition (iii) does not hold by (b), so C(a1,a2,a3)

is not rational. By Theorem 3.11, it follows that no D ∈ lnd(B) \ {0} satisfies
D2(f + g) = 0. �

Finally, we note that the fact that P (3) is true gives us partial information about
P (4), by Lemma 4.3. In particular:

4.10. Corollary. P (4) is true whenever cotype(a1, a2, a3, a4) > 1.
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