LOCALLY NILPOTENT DERIVATIONS OVER A UFD
AND AN APPLICATION TO RANK TWO
LOCALLY NILPOTENT DERIVATIONS OF k[Xy,...,X,]

DANIEL DAIGLE AND GENE FREUDENBURG

ABSTRACT. Given a UFD R containing the rational numbers, we study locally
nilpotent R-derivations of the polynomial ring R[X,Y]; in particular, we give a
generalization of Rentschler’s Theorem and a criterion for the existence of a slice.
These results are then applied to describe rank two locally nilpotent derivations of
k[Xy,...,X,], where k is a field of characteristic zero. We also give an example
of a non-triangulable locally nilpotent derivation of k[X,Y, Z] whose set of fixed
points is a line.

Let k be a field of characteristic zero.

It is well-known [12] that studying algebraic (7,-actions on the affine space A"
(over the field k) is equivalent to studying locally nilpotent derivations D : B — B,
where B is the polynomial ring in n variables over k (abbreviated B = kl"). Hence,
much effort has gone into attempts to understand those derivations. One way to
approach this problem is to classify derivations according to their rank:

Definition (See [7]). Let D be a k-derivation of B = kl"l. The rank of D is the
least integer r > 0 for which there exists a coordinate system (Xi,...,X,) of B
satisfying k[ X, 41,..., X,] C ker D.

Recall that Rentschler [10] showed that every locally nilpotent derivation of k2! is
of rank at most one. Until recently, it was not known whether, for n > 3, locally
nilpotent derivations of kIl having maximal rank n could exist; this question was
answered affirmatively in [6]. Note that rank D = n means that no variable of
B = k[ is in ker D.

Derivations of low rank are easier to understand: rank D = 0 means D = 0, and it
was shown in [7] that if rank D = 1 then D has the form f(X3,...,X,)- 0/0X; for
some coordinate system (Xi,...,X,,) of B;in other words, rank D = 1 is equivalent
to the two conditions:

ker D = k"™ and B = (ker D)!".
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As to derivations of rank two, it seems that only examples and special classes have
been understood. For instance, [5] studies the class of rank two derivations of the
form

0 0

D =p(Xy,....,Xn) 5= Xay oo, Xp) =

p( 2y ) )8)§1+q( 3 )8)(2
The third section of this paper is devoted to locally nilpotent derivations of k!
of rank at most two. In particular, 3.2 gives an explicit description of all such
derivations. Note that 3.2 and 3.3 generalize the results of [5] and have the following

consequence:

Corollary. Let D # 0 be a locally nilpotent derivation of B = k" of rank at most
two. Then
(1) ker D = k[»~1,
(2) If D is fized point free then D(s) =1 for some s € B. Consequently, D has
rank one.

What we mean, here, by a fixed point of D, is a fixed point of the corresponding
Ga-action on A", Hence, there do not exist fized point free G,-actions on A" having
rank 2. However, free actions of higher rank do exist: for example, J. Winkelman
constructed a triangular (7,-action on A* which is fixed point free and of rank 3 (c.f.
[13]). It remains an open question whether any rank 3 algebraic (7,-action on A® can
be fixed point free.

We also point out our example 4.3 of a (rank two) non-triangulable locally nilpotent
derivation of k[ X, Y, Z] whose set of fixed points is a line. This gives a negative answer
to the question whether every rank two locally nilpotent derivation of k[X,Y, Z] is
of the form f T, where T is a triangulable derivation and f € k[X,Y, Z] (note that
rank three locally nilpotent derivations of kP®l, which are now known to exist, cannot
be of the form f - T'). In fact, the main purpose of section four is to establish 4.3.

All results of section three are immediate consequences of the results of the pre-
ceding section. In section two, we investigate locally nilpotent R-derivations of the
polynomial ring R[X, Y], where R is a UFD containing the rational numbers. In par-
ticular, we give a generalization of Rentschler’s Theorem, a criterion for the existence
of a slice and a criterion for triangulability over R.

1. PRELIMINARIES

Throughout this paper, all rings are commutative and have an identity element. If
A is a ring then A* is the group of units of A; if A is an integral domain then qt A
denotes the field of fractions of A.

If P is a polynomial in Xy, ..., X, then Px, denotes dP/0X;. If B is a ring and

fyg € B, then (f,g)B denotes the ideal of B generated by f and g; if B is a UFD
then gedg(f, g) denotes the greatest common divisor (in B) of f and g.
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If A is a subring of B and n is a positive integer, then the notation B = Al means
that B is A-isomorphic to the polynomial ring in n variables over A. Suppose that
B = A, A coordinate system of B over A is an ordered n-tuple (Xi,...,X,) of
elements of B satisfying B = A[Xy,..., X,]; a variable of B over A is an element
X of B such that B = A[X, X3,...,X,] for some X,,..., X, € B. If Ais a field
then we may simply speak of a coordinate system of B, or of a variable of B, with
no mention of A; indeed, A is then uniquely determined: A = {0} U B*.

A subring A of a domain B is said to be factorially closed in B if for all z,y € B
we have vy € A\ {0} = z,y € A.

Let B be a domain of characteristic zero and let D be a derivation of B (i.e., a
derivation from B to B). D is locally nilpotent if for each b € B there exists an
integer n > 0 such that D"(b) = 0. D is irreducible if the only principal ideal of B
containing D(B) is B (or equivalently, if D cannot be written as D = aD’ with a a
nonunit element of B and D’ a derivation of B).

1.1. Let B be an integral domain of characteristic zero, let D : B — B be a nonzero
derivation of B, and let A = ker D. The following facts are mostly well-known.

(1) If D is locally nilpotent then A is a factorially closed subring of B. In partic-
ular, if D is locally nilpotent and B is a UFD then A is a UFD.

(2) Let S be a multiplicatively closed subset of B\ {0}, and consider the derivation
S™ID of S7'B. Then

(a) S7D is locally nilpotent if and only if D is locally nilpotent and S C A.
(b) If S C A then ker S7!D = S7'A and S71AN B = A.

(3) Assume that Q C B. If D is locally nilpotent and D(b) = 1 for some b € B,
then B = A[p] = Al

(4) Assume that Q C B. If D is locally nilpotent, choose any b € B such
that Db # 0 and D?b = 0, and let S = {1,Db,(Db)?,...} C A. Then
S=1D(b/Db) = 1 so, by (3), ST'B = (S~1A)[b] = (S~1A)M,

(5) If D is locally nilpotent, let S = A\ {0}, then (4) implies S™'B = (qt A)!
and (2b) implies qt AN B = A.

(6) Let b € B\ {0}. The derivation bD is locally nilpotent if and only if D is
locally nilpotent and b € A.

(7) Let f € B[T] = B" and let D’ be the unique derivation of B[T] which extends
D and satisfies D'T = f. Then D’ is locally nilpotent if and only if D is locally
nilpotent and f € B.

(8) Suppose that B is a UFD. Then

(a) D = a Dy where a € B and Dy is an irreducible derivation of B. More-
over, a and Dy are unique, up to multiplication by units of B.
(b) If D is locally nilpotent then so is Dg, and « € ker D.

Here are some references for the above facts. For (1), see 1.2 of [3]; for (2), see the
proposition in [8]; (3) is Proposition 2.1 of [14]; (4) is mentioned in the introduction



4 DANIEL DAIGLE AND GENE FREUDENBURG

to section 2 of [4]; (5) follows from (4); (6) is well-known; (7) can be found in [7];
part (a) of (8) is an easy exercise, and (b) follows from (6).

1.2 (Rentschler’s Theorem). If L is a field of characteristic zero and D is a
nonzero, locally nilpotent derivation of L[X,Y] = LI then there exist P,(Q such
that L[X,Y] = L[P,Q] and ker D = L[P]. Moreover, there exists a € L[P] such that

Px Py

Dh =« hx hy

forall h e L[X,Y].

Remark. Although we will refer to the above statement as “Rentschler’s Theorem”,
the actual theorem of Rentschler [10] is, in a sense, stronger than this one. Indeed,
Rentschler proved that the automorphism X +— P, Y — () was tame, and obtained
as a corollary that every L-automorphism of L[X,Y] is tame. Note, also, that we
chose to describe D in terms of a jacobian determinant (as opposed to the usual
D = « 0/0Q), because this form seems to be more convenient for the purpose of
generalization. A quick proof of 1.2 is given in the next section.

2. LOCALLY NILPOTENT DERIVATIONS OVER A UFD

Throughout this section, R denotes a UFD which contains Q, B = R[X,Y] = R
and K = qt R.

Our first aim is to describe all locally nilpotent R-derivations of B, and this is
accomplished by 2.4; note, also, that 2.4 may be regarded as a generalization of
Rentschler’s theorem. Then we address the questions of existence of a slice, and of
triangulability; results 2.5 and 2.8 answer these questions.

Proposition 2.1. If D # 0 is a locally nilpotent R-derivation of B = R[X,Y] then
ker D = R,

Remark. The above statement, as well as its proof below, remains true if we replace
the assumption Q C R by the weaker assumption that R is a UFD of characteristic
zZero.

Proof. Write A = ker D. Since R is a UFD so is B and, by part (1) of 1.1, so is A.
Hence R C A C B = R are UFD’s and A has transcendence degree one over R by
part (5) of 1.1. Using 3.4 of [11], we conclude that A = RIY. O

We now give a quick proof of Rentschler’s Theorem.

Proof of 1.2. Let A = ker D. By 2.1, A = L[P] = L for some P. Note that
(1) If S = A\ {0} then ST'L[X,Y] = L(P)Y, by part (5) of 1.1.
(2) L(P)Nn L[X,Y] = L[P], again by part (5) of 1.1.

(3) LIX,Y] is geometrically factorial over L, since it is a polynomial algebra.



LOCALLY NILPOTENT DERIVATIONS )

By 2.4.2 of [11] we obtain L[X,Y] = L[P|M, i.e., L[X,Y] = L[P, Q] for some Q.
Regarding D as an extension of the zero derivation of L[P], part (7) of 1.1 implies

that DQ € L[P]. Let a« = DQ/6, where § € L* is the jacobian determinant of
(P, Q) with respect to (X,Y). Then a straightforward calculation gives the desired
expression for Dh. [

Definition 2.2. Given P € B, define an R-derivation Ap : B — B by

B 0 0 _ |y By
Ap = _Pyﬁ + PXa—Y, or equivalently Ap(h) = hx by

Remark. 1If Py, P, € B then Ap, = Ap, & P, — P, € R.

for all h € B.

Proposition 2.3. If P € B is a variable of K[X,Y] such that gcdg(Px,Py) =1,
then the R-derwation Ap: B — B satisfies:

(1) Ap is locally nilpotent and irreducible;

(2) ker Ap = R[P];

(3) Ap(B) contains a nonzero element of R.

Proof. Write D = Ap. To show that D is locally nilpotent, consider the K-derivation
S™D of K[X,Y] where S = R\ {0}, and let Q € B be such that K[P,Q] = K[X,Y].
Then

Px Py
Px Py

Px Py
@x Qv

so S71D is a triangular derivation, hence a locally nilpotent derivation, and conse-
quently D is locally nilpotent. Observe that Ap(Q) = (S7!D)(Q) actually belongs
to K*N B =R\ {0}, so (3) holds.

Let b € B be such that D(B) C (b)B. In particular, b is a common divisor of
Px = D(Y)and Py = D(—X), so b € B*. Hence D is irreducible and (1) holds.

By 2.1, ker D = R[H] for some H € B. Since D(P) = 0, we have P € R[H] and we
may write P = f(H) with f(T) € R[T], T an indeterminate. Now Px = f'(H)Hx
and Py = f'(H)Hy, so f'(H) is a common divisor of Px and Py and consequently
f'(H) € R*. Consequently f(T) = uT+r withu € R*and r € R, soker D = R[H| =
R[P] and (2) holds. O

Theorem 2.4. Let R be a UFD containing Q, let B = R[X,Y] = R and let
K =qt R. For an R-derwation D # 0 of B, the following are equivalent:

(1) D is locally nilpotent;
(2) D = aAp, for some P € B which is a variable of K[X,Y] and satisfies
gedg(Px, Py) = 1, and for some a € R[P]\ {0}.

Moreover, if the above conditions are satisfied then ker D = R[P].

(S7'D)(P) = =0 and (S7'D)(Q) = € K*,
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Proof. The fact that (2) implies (1), as well as the last assertion, follows from 2.3.

Suppose that (1) holds. By 2.1, we have ker D = R[P] for some P € B. Consider
SYID: K[X,Y] — K[X,Y], where S = R\ {0}. By part (2) of 1.1, S7!D is locally
nilpotent and ker S™'D = K[P]; thus 1.2 implies that P is a variable of K[X,Y] and
that for some o € K[P] we have

Px Py

-1,
S D.hr——)QhX hy

for all h € K[X,Y].

Hence D = a Ap.

We claim that gedg(Px,Py) = 1. In fact, Px and Py are relatively prime in
K[X,Y], since P is a variable of this ring. This implies that » € R\ {0}, where
we define r = gedg(Px, Py). Then, if ¢ € R is the constant term of P € R[X,Y],
r divides every coefficient of P — ¢. In other words, we have P = rP’ + ¢ for some
P’ € B, and it follows that R[P] C R[P’']. Since 0 = D(P) = D(rP' + ¢) = rD(P’),
we have P’ € ker D = R[P]. Hence R[P| = R[P’] and consequently r € R* and
ngB(Px,Py) =1.

Next, we show that o € R[P]. Since a € K[P] we have o = b/s with b € R[P],
s € R\ {0} and gedg(b,s) = 1. For each h € B we have

sD(h) = bAp(h) = s | bAp(h) = s | Ap(h)

and in particular s is a common factor of Py = Ap(Y) and Py = Ap(—X). By the
preceding paragraph, s € R*, so a € R[P] and (2) holds. [

Theorem 2.5. For a locally nilpotent R-derivation D of B = R[X,Y], the following
conditions are equivalent:

(1) D(b) =1, for some b € B;

(2) D is irreducible and B = (ker D)M;

(3) (DB) = B, where (DB) is the ideal of B generated by the image of D.

The following will be needed for the proof of 2.5.

Lemma 2.6. Let E be an integral domain containing Q, and let P € E[X,Y] be
such that (Px, Py)E[X,Y]| = E[X,Y]. Then (qt E)[P]N E[X,Y] = E[P].

Proof. Write L = qt E. If L[P]NE[X,Y] € E[P] then we may choose F' € L[T]\ E[T]
of minimal degree such that F'(P) € E[X,Y].

By the assumption, Pxu+ Pyv = 1 for some u, v € E[X,Y]. Since F(P) € F[X,Y]
implies F'(P)Px, F'(P)Py € E[X,Y], we have F'(P) = (F'(P)Px )u+(F'(P)Py)v €
E[X,Y]. By minimality of deg F' we obtain F" € E[T] so, if we write F' = Y f;T" with
f; € L, we must have f; € E forall: > 0 (for Q C E). Hence fo = F(P)—Y;50 fiP' €
E[X,Y], thus fo € LNE[X,Y] = F and consequently F' € E[T], a contradiction. [
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Proof of 2.5. If any one of the three conditions holds then clearly D is irreducible,
so if we write D = aAp as in 2.4 then a € R*. Replacing P by aP if necessary,
we may arrange that D = Ap where P € B is a variable of K[X,Y] and satisfies
gedg(Px, Py) = 1. Note, also, that ker D = R[P] and that (DB) = (Px, Py)B.

If (1) holds then (2) follows from the third part of 1.1.

If (2) holds then R[X,Y] = R[P], so R[X,Y] = R[P,Q)] for some @, and such a
@ satisfies PxQy — Py@Qx € R*; hence (Px, Py)B = B and (3) holds.

Assume that (3) holds, i.e., that (Px, Py)B = B, and let u, v € B be such that
Pxu+ Pyv = 1. Note that, in order to show that (1) holds, it suffices to show that P
is a variable of B over R (let () be such that B = R[P, (] then, as in the preceding
paragraph, we have D(Q) € R* and (1) easily follows). The first step is:

Claim. Given a ring homomorphism ¢ : R — E where E is a domain, let ¢:
R[X,Y] — E[X,Y] be the unique extension of @ such that p(X) =X and 3(Y) =Y,
and let A¥ denote the E-derivation Aypy of E[X,Y]. Then A% is locally nilpotent
and has kernel E[p(P)]. Moreover, if E is a field then $(P) is a variable of E[X,Y].

To see this, write P = @(P) and note that Pxyu + Pyv = 1 implies
(1) Px(u) + Pyp(v) = 1,
so P ¢ E and consequently A¥ # 0. Since the diagram

R[X,Y] =225 R[X,Y]

| K
E[X,Y] 255 E[X,Y]

commutes, (A?)"(X) = (A?)"(¢(X)) = ¢(Ap™"(X)) = 0 for n > 0, since Ap is
locally nilpotent by 2.3; similarly, (A¢)"(Y) = 0 for n > 0, so A¥ is locally nilpotent.

If £ is a field then 1.2 implies that ker A¥ = E[£] for some variable ¢ of F[X,Y]
(note that E has characteristic zero since Q C R). Thus P € E[¢], and by equation 1
we obtain P = A\ + pu with A € E* and p € E. Hence, in this case, P is a variable
of E[X,Y] and ker A¥ = E[P].

If £ is not a field then let L. = qt £ and let b : R — L be the composition of ¢ with
E — L. Then the preceding paragraph implies that ker A¥ = L[ P] and, on the other
hand, it is clear that A¥ is an extension of A¥. Hence ker A¥ = ker A¥ N E[X,Y] =
L[ P]N E[X,Y], and this is equal to E[ P] by 2.6. This proves the claim.

There are now several ways to finish the proof.
For instance, the claim implies that P is a residual variable of R[X,Y]; if R is
noetherian then we may invoke Theorem B of [1] and conclude that P is a variable

of B.
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If R is not necessarely noetherian then we may apply 2.3.1 of [11] to this situation.
In fact, let (S, k, K, A) of [11] correspond to our (R \ {0}, R, R[P], B); then, in order
to deduce B = R[P][l] from the cited result, one has to verify that R[P] is “S-inert”
in B relative to R, and this follows from the above claim with a little bit of work.

We now give a self-contained proof. By the length of an element r € R\ {0}, we
mean the number of factors in a prime factorization of r: if r = py - -+ p, where each
p; is a prime element of R, the length of r is n (the length of a unit is 0).

Let

Q={Qec B | K[P,Q]= K[X,Y]}.
If @ € Qthen Ap(Q) € BN K* =R\ {0}, so a mapping ¢ : Q — N is defined by

(Q) = length of Ap(Q).

Suppose that @ € Q satisfies £(Q)) > 0. Choose a prime element p of R which divides
Ap(@Q), let E = R/pR and consider the canonical epimorphism ¢ : R — E. Let ¢
and A¢ be as in the above claim and let P = $(P). Since p divides Ap(Q)) we have

A?(g(Q)) = ¢(Ap(Q)) = 0, s0
#(Q) € ker A¥ = E[P] = ¢(R[P])
(where the first equality follows from the claim), and consequently $(Q) = &(f(P))

for some f(T) € R[T], where T is an indeterminate. Now @ — f(P) € ker = pB
and if we define
— f(P
P
then clearly )’ € Q and

Ap(Q') = Ap(Q — f(P))  Ap(Q)

p p

Y

o (@) = 1(Q) 1.
Hence there exists Q € Q such that ((Q)) = 0, i.e., such that Ap(Q) € R*. Thus
D(AQ) =1, where A = (DQ)™' € R*. O

We now consider the notion of triangulability for derivations. In general, under-
standing which derivations are triangulable seems to be a very difficult question but,
in the context of this section, the problem turns out to be relatively easy.

Definition 2.7. A derivation D of B is triangulable over R if there exists X', Y' € B
such that B = R[X",Y’'], DX’ € R and DY’ € R[X'].

Since every derivation is a multiple of an irreducible one, the main problem is to
understand which irreducible derivations are triangulable. We give a criterion for
this, and then an example.
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Lemma 2.8. Let D be an irreducible, locally nilpotent R-derivation of B, and write
D = Ap with P as in 2.4. Then the following conditions are equivalent:

(1) D is triangulable over R;
(2) there exists a variable () of B over R such that K[P, Q] = K[X,Y].

Proof. Suppose D is triangulable and consider X', Y’ such that B = R[X',Y"],
DX'=a€ Rand DY' = f(X') € R[X"].

If @ =0 then X’ € ker D = R[P], so R[P,Y'] O R[X',Y'] = B and consequently
@ =Y’ satisfies (2).

If @ # 0 then let F(T) € R[T] be such that F'(T) = f(T), and define ¢ =
aY' — F(X'). Then D¢ = aDY' — F'(X')DX' = 0, so £ € kerD = R[P], so
K[P,X'] 2 K[¢,X'] = K[X',Y'] and consequently () = X' satisfies condition (2).

Assume that (2) holds. Then B 3 D(Q)) = PxQy — PyQx € K*, so D(Q) € R.

Choose Y’ € B such that R[Y',Q] = B. Then K[Y', Q] = K[P, Q] implies that
P =XY'"+ f(Q), with A\ € K* and f(T') € K[T); since R[Q,Y’] = B and P € B, it
then follows that A € R\ {0} and f(7T') € R[T]. Now

0=DP=)\DY'+ f(Q)DQ = ADY' € R[Q] = DY’ € R[Q)],

so we have B = R[Q,Y’], DQ € R and DY’ € R[(Q)], i.e., D is triangulable over
R. O

Example 2.9. If R is not a field then there exists an irreducible, locally nilpotent R-
derivation D : B — B which is not triangulable over R and such that B # (ker D),
Indeed, let 7 be a prime element of R and let

P =7"X 4 (7Y + X°)? € B,
where a,b,c,d are positive integers, ¢ > 1 and d > 1. Since K[P,7’Y + X°] =
K[X, 7Y 4+ X¢] = K[X,Y], P is a variable of K[X,Y]. Since Px and Py are
relatively prime in B, 2.4 implies that Ap is an irreducible, locally nilpotent R-
derivation of B. Moreover, the ideal (Px, Py) of B is contained in the proper ideal
(7, X), so B # (ker Ap)l by 2.5.

To see that Ap is not triangulable over R, let us suppose the contrary. Then, by
2.8, there exists a variable () of B over R which satisfies K[P,Q] = K[X,Y]. Thus
K[P,Q] = K[P,z°Y + X°] and consequently Q@ = \(#®Y + X¢) + g(P) for some
A € K* and ¢(T) € K[T]. Multiplying by a suitable element of K* yields

(2) @@ = ai (7Y + X°) + G(P),
where ag, a; € R\ {0}, G(T) = =L, rT* € R[T] (r; € R) and
(3) ngR(a07a17r07"'7rd> = 1.

Let £ = R/7R,let ¢ : R — F be the canonical epimorphism and define $: R[X,Y] —
E[X,Y] as in the proof of 2.5. Also, let G(*) = " o (r))T* € E[T).
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If 7 | ap then equation 2 yields 0 = ¢(a;)X°¢ + G¥)(X°?), and this implies that
¢(a1) =0 and G = 0. In view of equation 3, this is impossible.
If # fap then equation 2 gives

P(a0)2(Q) = p(a1) X + G (X, where p(ao) € E \ {0}.
Since () is a variable of B over R, it follows that ¢(Q) is a variable of E[X,Y] over
E, and hence that ¢(a;)X¢ + G¥)(X*?) is a variable of (qt E)[X,Y]. This is absurd,

so we must conclude that Ap is not triangulable over R.

3. DERIVATIONS OF RANK TWO

Throughout this section, k is a field of characteristic zero and R,, = k™.
Using the results of section 2, we immediately obtain a description of all locally
nilpotent derivations of ki™ of rank at most two.

Definition 3.1. Given a coordinate system v = (Xj,...,X,) of R, and an element
P € R, = k[X;,...,X,], define a derivation A} : R, — R, by

9, 0
A - -
Ap =P, ax,, Ty
Remark. A convenient notation is v = (Xj,...,X,—2,Y,Z) and A}, = —P;0/0Y +
Py 0/07.

Corollary 3.2. For a k-derivation D # 0 of R, = k"l the following are equivalent:

(1) D is locally nilpotent and rank D < 2;

(2) D = a A} for some vy, P and « satisfying
o v=(X1,...,Xu2,Y,7Z) is a coordinate system of R,
o P € R, is avariable of k(Xy,..., X,_0)[Y, Z] satisfying gcdg (Py, Pz) =1,
e « is a nonzero element of k[ X1, ..., X,—o, P].

Moreover, if the above two conditions are satisfied then the following hold:

(3) ker D = k[X;y,...,X—2, P];

(4) A} is irreducible;

(5) AL(R,) contains a nonzero element of k[X1,..., X, —2].

Corollary 3.3. For a locally nilpotent derivation D of R, = k™ of rank at most
two, the following conditions are equivalent:

(1) D(f) =1, for some f € R,;

(2) (D R,) = R, where (D R,,) is the ideal of R, generated by the image of D.

Corollary 3.4. Let D # 0 be a locally nilpotent derivation of R, = k" of rank at
most two, and write D = a A}, where v, a and P are as in 3.2. Then the following
are equivalent:

(1) rank D = 1;
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(2) R, = (ker D)l!;
(3) (Pv,Pz)R, = R,.

Proofs. Each one of the above results deals with R-derivations of R, = R[Y, Z], where
R =Kk[Xi,...,X,—2] and where (X3,...,X,—2,Y,7Z) is a suitably chosen coordinate
system of R,. Thus 3.2 follows from 2.3 and 2.4, and 3.3 is a consequence of 2.5. For
3.4, note that ker D = ker A}, and apply 2.5 to A}, O

4. A NON-TRIANGULABLE DERIVATION oF K[X,Y, 7] FixiNG A LINE

Throughout this section, k is a field of characteristic zero and R, = kl"l. We do
not assume that k is algebraically closed, except in 4.7.

If « is an algebraic action of G, on A", and if D is the corresponding locally
nilpotent derivation of R,,, then it is well-known that the set of fixed points of « is
the vanishing set of the ideal (DR,) of R, (i.e., the ideal generated by D(R,,)); and it
is equally well-known that « is a triangulable action if and only if D is triangulable,
where:

Definition 4.1. Let D be a k-derivation of R,,. We say that D is triangulable if there
exists a coordinate system (Xi,...,X,) of R, such that D(X;) € k and D(X;) €
k[Xi,..., Xi—q] for 2 <@ < n.

Note that all triangulable derivations are locally nilpotent. As to fixed points, the
following terminology is useful:

Definition 4.2. Let B be an integral domain of characteristic zeroand let D : B — B
be a locally nilpotent derivation. Then Fix (D) denotes the closed subset V(DB) of
Spec B, and the closed points of Fix (D) are called the fized points of D.

We are about to give an example (see 4.3) of a non-triangulable locally nilpotent
derivation D of Rz such that Fix (D) is a line. Although several examples of non-
triangulable locally nilpotent derivations of R, are known, it seems that 4.3 is the
first one which is also irreducible. As far as we know, all examples before this one
were obtained by multiplying a triangulable derivation by a cleverly chosen element
of its kernel. So 4.3 gives a negative answer to the question whether every locally
nilpotent derivation of R3 is a multiple of a triangulable derivation.

Another interesting feature of 4.3 is its set of fixed points. The usual strategy for
proving that a derivation D is not triangulable is to show that Fix (D) is not the set of
fixed points of a triangulable derivation; this has in fact raised the question whether
Fix (D) is the only obstruction for triangulability (see [12] p. 169 or [3] p. 675).
However, if D is the derivation of R3 given in 4.3 then it is easy to find a triangulable
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derivation T such that Fix (7T') = Fix (D) as sets; further, if one defines the scheme of
fized points of D to be Fiz(D) = Spec R3/(DR3) then Fiz(D) = Fiz(T) as schemes.!

Example 4.3. There exists a rank two locally nilpotent derivation D of R; =
k[X,Y, Z] with the following properties:

(1) D is irreducible;

(2) D is non-triangulable;

(3) the set Fix (D) is a line.

Indeed, let D = A}, where v = (X,Y,Z) and P = XY 4 (XZ + Y?)% If we write
K =k(X) then K[P,XZ +Y?] = K[Y,Z] so P is a variable of K[Y, Z]. Since

Py =X +4Y(XZ+Y?) and Py =2X(XZ+Y?)

are relatively prime in Rs, 3.2 implies that D is an irreducible locally nilpotent
derivation of rank one or two. We easily see that rank D = 2, for instance by using
3.4 and (Py, P7z)R3 # R3. One easily checks that the ideal (DR3) = (Py, Pz)Rs of
Rs satisfies (X2,Y®) C (DR3) C (X,Y), so Fix(D) is the Z-axis in A®. It remains
to prove that D is not triangulable, but this requires some preliminary work. In fact,
the main purpose of this section is to prove that D is not triangulable.

Remark. The above example is 2.9 with (X,Y,Z) in place of (7, X,Y) and with
a=>b=1and ¢ =d = 2. So, by 2.9, it follows that D : k[X Y, Z] — k[X,Y, Z] is
not triangulable over k[X]. We don’t know if non-triangulability over k[X] implies
non-triangulability.?

We begin with two lemmas on polynomial rings in one variable. We denote the
nilradical of a ring A by nil(A) and the reduced ring A/nil (A) by Area. If I is an
ideal of A then we denote its radical by V1.

Lemma 4.4. Consider the polynomial ring A[T| = I, where A is a noetherian

Al
ring. If a € A* and n € nil (A[T]) then AlaT + n] = A|T].
g. If (A[T]) [ | = A[T]

Proof. Write Ag = A[aT + n] and I = nil(Agp), and note that nil (A) C I C nil (A[T])
implies that nil (A[T]) = I A[T]. Now Aq+ 1 A[T] is a subring of A[T] which contains
A and also a ' (aT 4+ n)—a'n =T, so

A[T] = Ao + I A[T).

By induction, it follows that A[T] = Ao+ I?A[T] for all d > 1. Since Ap is noetherian
we have [? =0 for d > 0, s0 A[T] = Ap. O

Tt is interesting to ask whether there exists a triangulable T' such that Fiz(D) and Fiz(T) are
isomorphic as subschemes of A3, but we have not tried to answer this.

It was recently discovered that non-triangulability over k[X] does imply non-triangulability (see
Theorem 3.4 of [2]). Hence, the fact that D is not triangulable is also a consequence of [2].
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Lemma 4.5. Let k be a field and let B be a noetherian k-algebra satisfying B =

k[z] +nil (B) for some z € B. If there exists a subalgebra A of B such that B = AN
then B = A[z] and, consequently, A is k-isomorphic to B/zB.

Proof. Write N = nil(B) and let = mean k-isomorphism. Observe that Brea =
(AM),q = (Area)™ and that Brea = (k[2] + N)/N = k[2]/(N N k[z]) = k[Z], where
z is the image of z in k[z]/(N N k[z]). Thus Z must be transcendental over k, since
(Area)!!! contains a transcendental element. It follows that (Areq)! = &MU, and hence
that Areq = k. So A = k + nil (A) and, consequently, if ¢ € B satisfies B = A[t] then
B = k[t]+ N. By the assumption,

E[t]+ N = k[z] + N,

so there exist f,¢g € k[T] (where T is an indeterminate) and m,n € N such that
z = f(t)+n and t = g(z) + m. Then t = g(f(t) + n) + m = g(f(t)) + n’' for
some n’ € N; since n’ actually belongs to N N k[t] = 0, we have t = g(f(¢)) and
consequently f(¢) = at 4 b, for some a € k* and b € k. Now

B = Aft] = Alat + b] = Alat + b+ n],

where the last equality follows from 4.4 and the fact that A is noetherian (a homo-
morphic image of the noetherian ring B = A[I]). Since z = at + b + n, we conclude

that B = A[z]. O

Next, we point out that the rank of a locally nilpotent derivation D is related to
the minimum dimension of a component of Fix (D):

Lemma 4.6. Let D # 0 be a locally nilpotent derivation of R,, such that Fix (D) # 0.
Write Fix (D) = Fy, U -+~ U Fy,, where 0 < dy < -+ <ds <n—1and Fy, # 0 is
closed and of pure dimension d; (i =1,...,s). Then:

(1) rank D > n —dy ;
(2) ds <n—1 if and only if D is irreducible.

Remark. Tn the event D is triangulable, it is known that Fix(D) = Z x A! for
some affine variety 7 (see [9]). If D is both triangulable and reducible, then F,_; =
7' x A™™P for some affine variety Z' (see [7]).

Proof. Note first that (2) is simply the definition of irreducibility in geometric terms.

For (1), let I denote the ideal (DR,) of R,. If r = rank D then there exists a
coordinate system (Xi,...,X,) of R, such that DX; = 0 for all ¢ > r, so [ =
(DXy,...,DX,) and consequently ht I < r. But I defines the closed set Fix (D),
whence ht I =n —d;. O
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We will also need to understand some of the properties of triangulable derivations
fixing a line. (By a line in A® we mean the zero-set of an ideal (X,Y), where X,Y
belong to some coordinate system (X,Y,7) of R3.) For the sake of simplicity, k is
assumed to be algebraically closed in the following:

Proposition 4.7. Assume that k is algebraically closed. For a k-derivation T on
Ry = kPl the following two conditions are equivalent:

(1) T is triangulable and Fix(T) is a single line in A®;

(2) For some coordinate system (X,Y,7) of Rs, T satisfies

TX =0, TY=X"f(X), TZ=Y"+XgX,Y),

where a and b are positive integers, f(X) € k[X] satisfies f(0) # 0 and
g(X,Y) € k[X,Y] is such that Y® + ag(a,Y) € k* for each root o € k of
f(X).
Moreover, if the above conditions are satisfied then the following hold:
(3) T is irreducible, rank T' = 2 and

kerT = k[X, X*f(X)Z — ;7Y™ - XG(X,Y)],

where G is any polynomial in k[ X, Y] such that Gy = g.

(4) Let B = R3/(TR3). Then there exists a subalgebra A of B such that B = Al
and A is unique up to k-isomorphism. Moreover, dimy A = ab.

(5) Let 7 : Spec Rz — Spec (kerT') be the morphism determined by the inclusion
ker T — Rs and, given a closed point ¢ of Spec(kerT), let n(&) denote the
number of irreducible components of the fiber #7(£). Then n(€) is either 1 or
b+ 1, and both values are realized.

Remark. The integers a and b and the function ¢ — n(¢) defined in the above state-
ment are independent of the choice of (X,Y, 7). Indeed, this is clear for n since it
is defined in geometric terms. Since b+ 1 is the maximum value of n(¢), and since
ab = dimyg A, we see that a and b are completely determined by T'.

Proof. Suppose that (1) holds. Since T is triangulable, there exists a coordinate
system (X,Y,Z) of R3 such that TX € k, TY € k[X] and TZ € k[X,Y]. Then
Fix (T) # 0 implies that the ideal (TRs) = (T'X,TY,TZ) is proper, so TX = 0.
Hence,

TX =0, TYek[X], TZeck[X,Y].

Since TY,TZ € k[X,Y], and since Fix (T') is the zero-set in A” of the ideal (T'Y,TZ),
Fix (T) = S x A' where S is the zero-set of TY and T'Z in A* = Speck[X, Y]. Since

Fix (T') is an irreducible curve by assumption, S is a single point. Replacing if
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necessary (X,Y,Z) by (X — z0,Y — yo, Z) for suitable zq,yo € k, we obtain that
S ={(0,0)}, and consequently

J(TY,TZ) = (X,Y) in the ring k[X,Y].

It immediately follows that TY = X°f(X)and TZ = \Y*+X¢(X,Y), where A € k*,
a and b are positive integers, f(X) € k[X] satisfies f(0) # 0, and ¢(X,Y) € k[X, Y]
is such that A\Y? 4 ag(a,Y)€ k* for every root a of f(X). Replacing Y by A~1/%Y
gives the desired expression for TY and T'Z, thus (2) holds.

The proof that (2) implies (1) is a straightforward verification which we omit. From
now-on, assume that (1) and (2) hold.

(3) Let P = —=X*f(X)Z + bl—le“ + XG(X,Y) where Gy = g. Then P is a
variable of k(X)[Y, Z] and

Py =Y"+ Xg(X,Y), Pz=-X"f(X)

are relatively prime in k[X,Y, Z]. Observe that T = —P; 2% + Py, i.e., T = A},
with v = (X,Y,Z). Thus 3.2 implies that ker T = k[X, P], T is irreducible and
rank T is 1 or 2. In the notation of 4.6, d = 1 for T, so rankT > n — d; = 2.
(Alternately, rank T' # 1 follows from 3.4 and (Py, Pz)R3 # Rs, and irreducibility of
T follows from 4.6 and d; = 1.)

(4) We have (T'R3) = (X°f(X),Y® + X¢(X,Y)) so

B=K[X,Y,Z]/(X"[,Y" + Xg) = A",

with Ag = k[X,Y]/(X*f,Y* + Xg). Now dimyg Ao is the total intersection number
(at finite distance) of the two affine plane curves X¢f = 0 and Y° + Xg = 0. By the
conditions stated in (2), these two curves meet only at the origin so dimy Ag is their
local intersection number at that point:

dimg Ap = dimyx k[[X, Y]]/(Xaf, Yb + Xg) = ab.

Observe that B = k|z,y, z] where z,y, z are the images in B of XY, Z respectively,
and that z and y are nilpotent (because the conditions of (2) imply that \/(T'R3) =
(X,Y)). Thus B = k[z] + nil (B), and 4.5 implies that any subalgebra A of B such
that B = Al is k-isomorphic to B/zB. Hence A is unique, up to k-isomorphism.

(5) Since ker T' = Kk[X, P], the morphism 7 may be identified with 7: A®> — A?
(z,y,2) — (z,P(z,y,2)). Let £ = (a, 3) be a closed point of A%

If o = 0 then 77'(¢) = {(0,y,2) € A® | ;7Y™ = 3}; this has b+ 1 components
if ##0, and 1 component if 5 = 0.

If v is a root of f then the fiber is the set of (o, y, ) such that b_%le"'l-l—aG(a, V)=
3. Now the derivative of the left hand side with respect to Y is in k*, by the conditions
stated in (2). Thus the equation is of the form ;Y + ¢; = 3, with ¢1,¢2 € k and
c1 # 0, and the fiber is irreducible.
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If « is neither 0 nor a root of f then the fiber is the set of (a,y,z) such that
cz + h(y) = B, where ¢ = —a®f(a) € k* and A(Y) = =V**! + aG(a,Y). So the

b+1
fiber is irreducible in this case. [
We can now finish the proof of 4.3.
4.8. The derwation D defined in 4.3 is not triangulable.

Proof. We may assume that k is algebraically closed. Indeed, let k be the algebraic
closure of k and extend D to D = A}: k[X,Y, Z] — Kk[X,Y, Z]. Then it suffices to
prove that D is not triangulable. So, from now on, we assume that k = k.

Let B = k[X,Y,Z]/I, where [ = (DR3) = (X +4Y(XZ 4+ Y?), 2X(XZ + Y?)),
and write x = X + I,y =Y + 1,2 =7+ 1 € B. Then we have X?, Y? € I, so
z,y € nil (B) and

B = k[z] 4+ nil(B).
If A is any subalgebra of B satisfying B = Al then 4.5 implies that A = B/zB.

Now
B/zB=k[X,Y, Z]/(X +4Y(XZ + Y2), 2X(XZ + Yz), Z)
= k[X,Y]/(X +4Y7, XY?) = K[Y]/(Y?),

so we may record the following for later use:

(4) If A is any subalgebra of B such that B = Al then dimy A = 5.

On the other hand, let 7 : Spec R3 — Spec (ker D) be the morphism determined
by the inclusion ker D < Rs. Then we may identify 7 with 7 : A® — A% (z,y,2) —
z,zy + (zz + y?)?), and we easily obtain
( (
(5) Y, ) {a union of 4 lines, if « =0 and 3 # 0;

a line, otherwise.

Suppose that D is triangulable, and let a, b and n(¢) be defined as in® 4.7. The
cited result and (5) imply that b + 1 = 4, and the same result and (4) imply that
ab = 5. This is clearly absurd, so D is not triangulable. [

Remark. More generally, consider P = X°Y + (X'Z + Y*)” where s,t > 1 and
u,v > 2 are integers. Let D = A}, where v = (X,Y, Z). Then it is easy to show that
D is a rank 2 locally nilpotent derivation of k[X, Y, Z], D is irreducible, and Fix (D)
is a line. Imitating the proof of 4.8, one sees that if uv —1 fs(u — 1) then D is not
triangulable.

3See also the remark following 4.7.
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