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Abstract. We develop a framework for studying normal rational surfaces which are

connected at infinity and admit an A1-fibration. As an application, we obtain the

following result. Let S be an affine surface over a field of characteristic zero. If S is a

complete intersection and has trivial Makar-Limanov invariant, then S is isomorphic

to a hypersurface of affine 3-space with equation XZ = P (Y ), for some nonconstant

polynomial P (Y ) in one variable.

1. Introduction

Sections 6–8 of this paper define and study a set map (K,B) 7→ (U, ρ) that “con-
structs” all pairs (U, ρ) such that U is a normal surface which is connected at infinity
and ρ : U → V is a surjective morphism whose general fiber is an affine line and whose
codomain V is an affine nonsingular rational curve (it then follows that U is rational).
One obtains (U, ρ) from (P1 × P1, p1) (where p1 : P1 × P1 → P1 is the first projection)
by first performing certain blowings-up, then contracting certain divisors to normal
points, and finally removing certain curves; here, one can think of (K,B) as a “recipe”
that dictates which blowings-up, contractions and removals to perform (for the purpose
of this introduction, we don’t need to know what type of objects K and B are).

The map (K,B) 7→ (U, ρ) provides a framework for investigating normal rational
surfaces U which are connected at infinity and admit an A1-fibration, and it is one of
the aims of this paper to develop that framework in a methodical way. Accordingly,
sections 6–8 give several results (notably 7.4 and 7.12) that describe how the properties
of the surface U are related to those of the data (K,B). As a first (and minor) reward,
we obtain a 1-line proof of Rentschler’s Theorem (see 7.2). The main application of the
theory is a generalization of a result of Bandman and Makar-Limanov obtained in the
last section of this paper; before presenting this result, we introduce some terminology.
Note that more applications of the theory will be given in the forthcoming [8].

A derivation D : R→ R of a ring R is said to be locally nilpotent if, for each x ∈ R,
there exists a positive integer n such that Dn(x) = 0. If k is a field of characteristic zero
then the Makar-Limanov invariant of a k-algebra R, denoted ML(R), is the intersection
of the kernels of all locally nilpotent k-derivations of R. Thus k ⊆ ML(R) ⊆ R
and ML(R) is a subalgebra of R. When ML(R) = k one says that the k-algebra
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R has trivial Makar-Limanov invariant. For an affine variety X over k one defines
ML(X) = ML

(
OX(X)

)
, where OX(X) denotes the coordinate algebra of X; thus

k ⊆ ML(X) ⊆ OX(X). One says that X has trivial Makar-Limanov invariant if
ML(X) = k. It is well known that X admits a nontrivial Ga-action if and only if the
inclusion ML(X) ⊆ OX(X) is strict. (Remark: the sentence “X is an affine variety
over k” means that X = SpecR where R is an integral domain and a finitely generated
k-algebra. In that case we have OX(X) ∼= R. Also note that algebraic varieties are
always assumed to be irreducible and reduced. This should be remembered whenever
the words curve, surface, threefold or hypersurface are encountered.)

Given a field k of characteristic zero, let D(k) denote the class of k-algebras of
the form k[X, Y, Z]/(XZ − P (Y )) for some nonconstant polynomial in one variable
P (Y ) ∈ k[Y ] \ k. It is well known and easy to see that each member R of D(k) is
a normal domain satisfying ML(R) = k. Also consider the class of affine surfaces S
over k satisfying OS(S) ∈ D(k), and let this class of surfaces be denoted by the same
symbol D(k); in other words, a surface belongs to D(k) if and only if it is isomorphic
to a hypersurface of A3

k with equation xz = P (y), with P nonconstant. By what we
have already said, each member of D(k) is in particular a normal affine surface with
trivial Makar-Limanov invariant.

Bandman and Makar-Limanov gave an example in [3] of a smooth affine surface S
over C satisfying ML(S) = C and S /∈ D(C). In the same paper, they proved that
if S is a smooth hypersurface of C3 satisfying ML(S) = C, then S ∈ D(C). In the
present paper we generalize that result by dropping the assumption on smoothness and
by replacing C by an arbitrary field of characteristic zero. We prove the following:

Theorem 9.9. Let R be a two-dimensional1 integral domain which contains a field k
of characteristic zero. The following conditions are equivalent.

(a) R ∈ D(k)
(b) ML(R) = k and R is 3-generated as a k-algebra
(c) ML(R) = k and R is a complete intersection over k.

Here, we say that a k-algebra R is a complete intersection over k if it is isomorphic to
a quotient k[X1, . . . , Xn]/(f1, . . . , fp) for some n, p ∈ N, where (f1, . . . , fp) is a height p
prime ideal of the polynomial ring k[X1, . . . , Xn]. If R is a complete intersection over
k, we also call SpecR a complete intersection over k. Translating the above result into
geometric language gives the equivalence of (a), (b), (c) in the following:

Theorem. Let k be a field of characteristic zero and S an affine surface over k. The
following conditions are equivalent.

(a) S ∈ D(k)
(b) ML(S) = k and S is isomorphic to a hypersurface of A3

k

(c) ML(S) = k and S is a complete intersection over k.

Moreover, if we assume that k is algebraically closed then the above are equivalent to:

(d) ML(S) = k, S is normal, and S \ Sing(S) has trivial canonical class.

1With respect to Krull dimension.
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The sentence “S\Sing(S) has trivial canonical class” should be understood as mean-
ing that a canonical divisor of the nonsingular surface S \Sing(S) is linearly equivalent
to zero. Equivalence of (a) and (d) follows from Theorem 9.8. (Note: H. Flenner
informed us that his student Kai Ledwig recently obtained, as part of his thesis work,
the equivalence of (a) and (d) in the case k = C.)

One obvious consequence of the above results is the fact that every hypersurface S
of A3

k with ML(S) = k belongs to D(k). More generally,

Corollary. Let X be a factorial threefold and a complete intersection over a field k of
characteristic zero. Then every hypersurface S of X with ML(S) = k belongs to D(k).

Indeed, if X is factorial and a complete intersection then every hypersurface of X is
itself a complete intersection, so the claim follows from the theorem.

As a concrete application, let X be Russell’s cubic, i.e., the solution-set of x+x2y+
z2 +t3 = 0 in A4

k; then X satisfies the hypothesis of the Corollary, so every hypersurface
S of Russell’s cubic with ML(S) = k belongs to D(k).

For another example, observe that if X is a threefold satisfying X × An
k
∼= An+3

k for
some n then X satisfies the hypothesis of the Corollary, so again every hypersurface S
of X with ML(S) = k belongs to D(k).

We stress that, in the last two theorems, equivalence of conditions (a–c) is valid
over any field of characteristic zero. To illustrate how this can be useful, we now give
a new proof of a known result. Consider the polynomial ring B = C[X, Y, Z] and let
0 6= Di : B → B (i = 1, 2) be locally nilpotent derivations satisfying ker(D1) 6= ker(D2)
and ker(D1) ∩ ker(D2) 6= C. Let K be the field of fractions of A = ker(D1) ∩ ker(D2)
and consider the K-algebra R = K ⊗A B. Then R ∈ D(K), by the main result of [5].2

Here we just want to point out that this is a trivial consequence of theorem 9.9: it is
clear that R is 3-generated as a K-algebra, and it is easy to see that dimR = 2 and
ML(R) = K; so R ∈ D(K) by 9.9.

Sections 2 (on tableaux), 3 (on surfaces) and 4–5 (on clusters) are preparatory in
nature. The theory of clusters provides a convenient way of handling arbitrary se-
quences of blowings-up of nonsingular surfaces, and of keeping track of the combina-
torial and arithmetical data associated with such sequences. Other formalisms have
similar purposes (Hamburger-Noether tableaux, characteristic pairs, etc), but clusters
lend themselves particularly well to the type of arguments that have to be made here,
and some of the crucial steps of our reasoning would be difficult to carry out if a differ-
ent formalism were used. Because clusters do not seem to be very well known by affine
algebraic geometers, we found it appropriate to organize the definitions, notations and
facts in an orderly and self-contained fashion, to make it easier on the reader. We do
that in section 4, whereas section 5 offers what we believe to be new results in the
theory of clusters.

2Generalizations of this can be found in [7].
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Hence, the objectives of the paper go beyond merely proving Theorem 9.9. They
include laying out a framework suitable for studying normal rational surfaces with A1-
fibrations, and presenting the part of the theory of clusters which is relevant in this
context.

More applications of the theory will be given in the forthcoming paper [8] by the
first author: by exploiting results 7.4 and 7.12 of the present paper and developing
the theory of exact tableaux, one obtains some insight into a class of surfaces which
includes in particular the normal rational hypersurfaces of A3 which admit a nontrivial
Ga-action.

We thank the referee for his useful comments, which allowed us to improve the clarity
of the paper.

2. Tableaux

We gather here some notions which are used in sections 4, 5, 7, and 8.

2.1. Definition. A tableau is a matrix T = ( p1 ··· phc1 ··· ch ) whose entries are integers satis-
fying ci ≥ pi ≥ 1 and gcd(pi, ci) = 1 for all i = 1, . . . , h. We allow h = 0, in which case
we say that T is the empty tableau and write T = 1. The set of all tableaux is denoted
T. It is sometimes useful to view T as a monoid, the operation being concatenation:

( p1 ··· pkc1 ··· ck )
( pk+1 ··· p`
ck+1 ··· c`

)
=
( p1 ··· pk pk+1 ···p`
c1 ··· ck ck+1 ···c`

)
and the identity element being the empty tableau 1.

2.2. Definition. Let T = ( p1 ··· phc1 ··· ch ) be a tableau.

(a) If T is empty (h = 0), we set δ(T ) = 0. If T is nonempty (h ≥ 1), we define

ĉi =
∏h

j=i+1 cj for each i ∈ {1, . . . , h} (in particular, ĉh = 1); then we set

δ(T ) =
(∑h

i=1 ĉi(ci + pi − 1)
)/(∏h

i=1 ci

)
,

which is a positive rational number.
(b) We say that T is exact if δ(T ) is an integer.

2.3. Lemma.

(a)
{

( 1
c ) | c ∈ Z and c ≥ 1

}
is the set of all exact tableaux having 1 column, and

is also the set of all tableaux T satisfying δ(T ) = 1.
(b)

{
( 1 1

1 c ) | c ∈ Z and c ≥ 1
}

is the set of all exact tableaux having 2 columns,
and is included in the set of tableaux T satisfying δ(T ) = 2.

(c) If h > 0 and ( p1 ··· phc1 ··· ch ) is an exact tableau then ph = 1.

Proof. Left to the reader. �

3. Preliminaries on surfaces

This section gathers definitions, notations and known facts on algebraic surfaces. All
surfaces are over an algebraically closed field k.
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3.1. Let f : X → Y be a birational morphism of nonsingular surfaces. The center
of f is the finite set cent(f) =

{
y ∈ Y | f−1(y) contains more than one point

}
; the

exceptional locus of f is the set exc(f) = f−1
(

cent(f)
)
.

3.2. By a “graph” we mean a finite undirected graph such that no edge relates a vertex
to itself and at most one edge exists between any given pair of vertices. A weighted
graph is a graph in which each vertex is assigned an integer (called its weight). If G
is a weighted graph and x is either a vertex or an edge of G then one can perform the
blowing-up of G at x, which is an operation which produces a new weighted graph; we
assume that the reader is familiar with blowing-up of weighted graphs, and with its
inverse operation the blowing-down (refer to section 1 of [6], for instance). A vertex e of
a weighted graph G is said to be contractible if (a) e has weight (−1); (b) e has at most
two neighbors; and (c) if e has two neighbors u 6= v then u, v are not neighbors of each
other. One can perform the blowing-down of G at e if and only if e is a contractible
vertex of G. A weighted graph which doesn’t have any contractible vertex is said to be
minimal. Two weighted graphs are equivalent if one can be obtained from the other
by a finite sequence of blowings-up and blowings-down.

3.3. Definition. Let C1, . . . , Cn be distinct irreducible curves on a surface W . If

(i) each Ci is a nonsingular projective curve included in W \ Sing(W )
(ii) (Ci · Cj)W ≤ 1 whenever i 6= j

(iii) Ci ∩ Cj ∩ Cj = ∅ whenever i, j, k are distinct,

one says that D =
∑n

i=1 Ci is an SNC-divisor of W . We sometimes identify an SNC-
divisor D =

∑n
i=1Ci with its support supp(D) =

⋃n
i=1 Ci. If D =

∑n
i=1 Ci is an

SNC-divisor of W then the dual graph of D in W , denoted G(W,D), is the weighted
graph whose vertex-set is {C1, . . . , Cn}, where distinct vertices Ci, Cj are joined by an
edge if and only if Ci ∩ Cj 6= ∅, and where the weight of the vertex Ci is (C2

i )W .

3.4. By a “linear chain” we mean a weighted graph of the form r r . . . rx1 x2 xq

(xi ∈ Z). The empty graph is a linear chain. An SNC-divisor whose dual graph is a
linear chain is also called a linear chain.

3.5. If U is a normal surface then there exists an open immersion µ : U ↪→ W where W
is a complete normal surface and W \U is the support of an SNC-divisor D of W . The
equivalence class of the dual graph G(W,D) (with respect to equivalence of weighted
graphs) is denoted G∞[U ], and is uniquely determined by the isomorphism class of U .

3.6. Let U be a normal surface. Then there exists a minimal SNC-resolution of sin-
gularities of U , by which we mean a birational and proper morphism σ : Û → U such
that

(i) Û is a nonsingular surface and σ restricts to an isomorphism from σ−1(Us) to
Us, where Us = U \ Sing(U);

(ii) the set E = σ−1(SingU) is the support of an SNC-divisor of Û ;
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(iii) no rational irreducible curve E ⊆ E is a contractible vertex of the dual graph

of E in Û .

Moreover, the minimal SNC-resolution of singularities of U is unique up to isomor-
phism. If σ : Û → U is the minimal SNC-resolution of singularities of U and P is a
singular point of U then σ−1(P ) is the support of an SNC-divisor of Û ; the set σ−1(P )

is called the resolution locus of P , and the dual graph of σ−1(P ) in Û is called the
resolution graph of P .

3.7. Let X be a nonsingular projective surface, E ⊂ X a union of curves, and E1, . . . ,Er
the connected components of E. We say that E is algebraically contractible if there exist
a normal surface X and a morphism π : X → X satisfying:

• for each i ∈ {1, . . . , r}, π(Ei) is a point Pi ∈ X and π−1(Pi) = Ei;
• π restricts to an isomorphism from π−1(X \ {P1, . . . , Pr}) = X \ E

to X \ {P1, . . . , Pr}.
If π exists then it is unique, and is called the contraction of E.

The following is a consequence of Artin [2] (see also Miyanishi [18], p. 53): If f :
X → Y is a birational morphism of nonsingular projective surfaces and E ⊂ X is a
union of curves included in exc(f), then E is algebraically contractible. In fact, one
can say more: let c : X → X be the contraction of E and g : X 99K Y the birational
mapping f ◦ c−1; then it is clear that g is well defined as a set map; using that X
is normal, one can show that g is actually a morphism. So one obtains the following
statement:

3.8. Let f : X → Y be a birational morphism of nonsingular projective surfaces and
E ⊂ X a union of curves included in exc(f). Then E is algebraically contractible and

f factors as X
c−→ X

g−→ Y , where c is the contraction of E and g is a proper birational
morphism.

3.9. Let W be a projective, nonsingular rational surface. A pencil Λ on W is called a
P1-ruling if it is base-point-free and if its general member is a projective line. If Λ is a
P1-ruling of W then by a section of Λ we mean an irreducible curve H ⊂ W such that
H ·D = 1 for any D ∈ Λ (it then follows that H ∼= P1).

3.10. Let W be a projective, nonsingular rational surface, ρ : W → P1 a surjective
morphism, and Λ the base-point-free pencil on W corresponding to ρ. If the general
fiber of ρ is a projective line, one says that ρ is a P1-fibration. Note that ρ is a P1-
fibration if and only if Λ is a P1-ruling.

3.11. Notation. Recall that, given k ∈ N, there exists a triple (Fk,Lk,∆k) where Fk
is a nonsingular projective rational surface, Lk is a base-point-free pencil on Fk each
of whose elements is a projective line, and ∆k is a section of Lk satisfying ∆2

k = −k.
Moreover, (Fk,Lk,∆k) is uniquely determined by k up to isomorphism. The surface Fk
is called the Nagata-Hirzebruch ruled surface of degree k.
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Statements 3.12 and 3.13, below, are well-known consequences of Gizatullin’s results
on P1-fibrations. Refer to [13], [17] or [18].

3.12. Let Λ be a P1-ruling on a projective, nonsingular rational surface W . Then Λ has
a section. Moreover, if H is a section of Λ then there exist a nonsingular projective
surface F and a birational morphism π : W → F satisfying:

(a) The exceptional locus of π is the union of the irreducible curves C ⊂ W which
are Λ-vertical3 and disjoint from H.

(b) The linear system π∗(Λ) is a base-point-free pencil on F each of whose elements
is a projective line, and the curve π(H) is a section of it.

(c) (F, π∗(Λ)) = (Fk,Lk) for some k ∈ N; moreover, if H2 ≤ 0 then H2 = −k and

(F, π∗(Λ), π(H)) = (Fk,Lk,∆k).

3.13. Let Λ be a P1-ruling on a projective, nonsingular rational surface W . Let H be
a section of Λ, let D ∈ Λ and let M be the reduced effective divisor of W satisfying
supp(M) = supp(H +D). Then the following hold.

(a) M is an SNC-divisor of W each of whose irreducible components is a P1.
(b) The dual graph G of M in W is a tree and the vertex H of G has exactly one

neighbor in G (let v denote the unique neighbor of H in G).
(c) Every vertex of G of weight (−1) is a contractible vertex of G.
(d) If G has more than two vertices then every vertex of G\{H} has negative weight

and some vertex of G \ {H, v} has weight (−1).
(e) Let ρ : W → P1 be the P1-fibration corresponding to Λ, let C be an irreducible

component of D satisfying (C2)W = −1, and let σ : W → W ′ be the contraction
of C. Then the rational map ρ ◦ σ−1 : W ′ 99K P1 is a morphism and a P1-
fibration.

(f) If G has two vertices then the weight of v is 0.

4. Preliminaries on clusters

This section recalls the notion of cluster, which provides convenient terminology
and notations for dealing with arbitrary finite sequences of blowings-up of nonsingular
surfaces. Refer to Chapter 1 of [1] for general background.

Throughout this section, we fix a nonsingular algebraic surface S over an alge-
braically closed field of arbitrary characteristic. By a “point over S,” we mean either
a point of S or a point infinitely near a point of S. Consider the partially ordered set
(S∗,≤), where S∗ is the set of points over S and P < Q means that Q is infinitely near
P . The partial order ≤ is called the natural order, and the symbol “≤” will always
stand for that order. The minimal elements of (S∗,≤) are called “proper points” of
S and correspond bijectively to the closed points of S. We leave it to the reader to
convince himself that (S∗,≤) can be rigorously defined, and that this can be done in
such a way that the claims contained in this section are true.

3A curve C ⊂W is said to be Λ-vertical if it is included in the support of an element of Λ.



8 DANIEL DAIGLE AND RATNADHA KOLHATKAR

4.1. Definition. A cluster on S is a (possibly empty) finite subset K of S∗ with the
property that, for any P,Q ∈ S∗, the conditions P ≤ Q and Q ∈ K imply P ∈ K. A
cluster is always regarded as being partially ordered by the natural order. Note that if
K is a cluster on S then each minimal element of K is a proper point of S. If K is a
cluster on S then a subcluster of K is any subset of K which is itself a cluster on S.

4.2. Given P ∈ S∗, define KP =
{
x ∈ S∗ | x ≤ P

}
. Then KP is a nonempty cluster

on S, and is totally ordered by natural order.

4.3. Given a cluster K on S, one defines the blowing-up of S along K, denoted

πK : SK → S,

as follows. Choose a total order � on K which extends the natural order (which means
that P ≤ Q ⇒ P � Q), write K = {P1, . . . , Pn} where P1 ≺ · · · ≺ Pn, and consider

Sn
πn−→ · · · π1−→ S0 = S where Si

πi−→ Si−1 is the blowing-up of Si−1 at the proper point
Pi of Si−1. Then the morphism π1 ◦ · · · ◦ πn : Sn → S0 is the blowing-up πK : SK → S
of S along K.

Actually, the blowing-up πK : SK → S is only defined up to equivalence (given
nonsingular surfaces Y1, Y2 and proper birational morphisms fi : Yi → S (i = 1, 2),
declare that f1, f2 are equivalent if there exists an isomorphism of varieties θ : Y1 → Y2

such that f2 ◦ θ = f1).

4.4. If K is a cluster on S and K ′ a subcluster of K then K \K ′ is a cluster on SK′

and we have the commutative diagram:

SK′
πK′

  A
AA

AA
AA

A

SK

πK\K′
==zzzzzzzz

πK
// S

4.5. We write Div(S) for the group of Weil divisors of S, and Cl(S) for the divisor class
group of S.

4.6. Let K be a cluster on S and let πK : SK → S be the blowing-up of S along
K. Given P ∈ K, one can define the corresponding exceptional curve EP as follows.
Choose a total order � on K which extends the natural order, write K = {P1, . . . , Pn}
where P1 ≺ · · · ≺ Pn, and consider the factorization

(1) SK = Sn
πn−→ · · · π1−→ S0 = S

of πK : SK → S, where Si
πi−→ Si−1 is the blowing-up of Si−1 at the proper point Pi

of Si−1. Then there is a unique i such that P = Pi and we set EP = π−1
i (P ) ⊂ Si.

The strict transform (resp. total transform) of EP on SK is denoted ẼK
P ⊂ SK (resp.

E
K

P ∈ Div(SK)); observe that ẼK
P and E

K

P are independent of the choice of �. Given

D ∈ Div(S), we write D̃K , D
K ∈ Div(SK) for the strict transform and total transform

of D, respectively.
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4.7. Given P ∈ S∗ and D ∈ Div(S), consider the cluster K(P ) =
{
x ∈ K | x < P

}
on

S, the corresponding blowing-up πK(P )
: SK(P )

→ S and the strict transform D̃K(P ) ∈
Div

(
SK(P )

)
of D. As P is a proper point of SK(P )

, it makes sense to consider the

multiplicity of P on D̃K(P ) ; we denote this integer by eP (D) and call it the multiplicity
of P on D. So each point P ∈ S∗ has a multiplicity on D ∈ Div(S).

4.8. Lemma. Let K be a cluster on S and consider πK : SK → S.

(a) If D ∈ Div(S) then D
K

= D̃K +
∑

P∈K eP (D)E
K

P .

(b) If κ ∈ Div(S) is a canonical divisor of S then κK +
∑

P∈K E
K

P is a canonical
divisor of SK.

Proof. See 1.1.18 and 1.1.26(7) of [1]. �

4.9. Given a cluster K on S and an irreducible curve G ⊂ S, we define

KG =
{
P ∈ K | eP (G) > 0

}
,

which is a subcluster of K. In short, KG is the set of points P ∈ K which lie on a
strict transform of G.

4.10. Definition. Let K be a cluster on S. Choose a total order � which extends the
natural order, and write K = {P1, . . . , Pn} where P1 ≺ · · · ≺ Pn. The pair (K,�)
determines the n × n matrix Q(K,�) = Q(K) = Q defined as follows. For each

j ∈ {1, . . . , n}, define a1j, . . . , anj ∈ N by E
K

Pj
=
∑n

i=1 aijẼ
K
Pi

(see 4.6 for the notations

ẼK
Pi

and E
K

Pj
). Then let Q be the n× n matrix4 whose jth column is

( a1j

...
anj

)
.

We write Qi(K) for the i-th row of Q(K). For the last row of Q(K) we may write
Qn(K) (if Q(K) is n× n) or Q∗(K) (if we prefer not to mention the “n”).

Given a subset A of K, we write QA for the (n− |A|)× n submatrix of Q obtained
by deleting the ith row of Q for each Pi ∈ A.

The following observation is trivial, but useful:

4.11. Lemma. Let K be any cluster on S, choose a total order � extending the natural
order ≤, write the elements of K as P1 ≺ · · · ≺ Pn and consider the n × n matrix
Q = Q(K,�) = (aij) defined in 4.10. Then for any i, j ∈ {1, . . . , n},

(a) aij is a nonnegative integer
(b) aii = 1
(c) if aij 6= 0, then Pj ≤ Pi (in particular j ≤ i, so Q is lower triangular).

Proof. These claims follow immediately from E
K

Pj
= a1jẼ

K
P1

+ · · · + anjẼ
K
Pn

, which is
the definition of Q. �

4In the terminology of [1], Q is the inverse of the proximity matrix of the cluster K.
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Concentric clusters and tableaux

Recall that if K is a cluster on S and ≤ is the natural order, then (K,≤) is a partially
ordered set.

4.12. Definition. A cluster K on S is said to be concentric if (K,≤) is totally ordered.

Consider a sequence Sn
πn−→ · · · π1−→ S0 = S, where Si

πi−→ Si−1 is the blowing-up of
Si−1 at a proper point Pi of Si−1. Then K = {P1, . . . , Pn} is a cluster on S, π1 ◦ · · · ◦πn
is the blowing-up of S along K, and the condition

(2) πi(Pi+1) = Pi for all i = 1, . . . , n− 1

is equivalent to K being concentric. Sequences Sn
πn−→ · · · π1−→ S0 = S satisfying (2)

determine combinatorial and arithmetical objects which have been studied extensively
by algebraic geometers. In 4.13, we explain how a concentric cluster determines a
tableau (refer to 2.1 for the definition of tableau).

4.13. Definition. Consider a triple (S,K,C) of the following type:

(∗) S is a nonsingular projective surface, K is a concentric cluster on S, C ⊂ S is
a nonsingular irreducible curve and, if K 6= ∅, C passes through the unique
minimal element of K.

Then (S,K,C) determines a tableau T (S,K,C) ∈ T which we now proceed to define.

Write K = {P1, . . . , Pn} with P1 < · · · < Pn (where < is the natural order) and
factor πK : SK → S as

S = S0
π1←− S1

π2←− · · · πn←− Sn = SK

where πi is the blowing-up of Si−1 at Pi; also let Ei = π−1
i (Pi) ⊂ Si. For each i such that

1 ≤ i ≤ n, note that the point Pi ∈ Si−1 belongs to either 1 or 2 irreducible components
of the closed subset (π1 ◦ · · · ◦πi−1)−1(C) of Si−1; if Pi belongs to 1 component (resp. 2
components), we say that πi is sprouting (resp. subdivisional) with respect to (S,C).
Clearly, if K 6= ∅ then π1 is sprouting with respect to (S,C). Let h(S,K,C) denote the
number of blowings-up among π1, . . . , πn which are sprouting with respect to (S,C).
We now define the tableau T (S,K,C).

4.13.1. If h(S,K,C) = 0 (i.e., K = ∅), we set T (S,K,C) = 1 (the empty tableau).

4.13.2. Assume that h(S,K,C) = 1, i.e., K 6= ∅ and π1 is the only sprouting blowing-
up among π1, . . . , πn. Then π−1

K (C) is the support of an SNC-divisor of Sn whose dual
graph is a linear chain as follows:

(3)
r r r r r r. . . . . .

C̃K En

−1a1 as as+1 an−1︸ ︷︷ ︸
p

︸ ︷︷ ︸
c

(ai ∈ Z)

where C̃K ⊂ Sn denotes the strict transform of C. Let p and c be the determinants5

of the subtrees indicated by the braces in diagram (3) and define T (S,K,C) =
(
p
c

)
. It

5For the definition of the determinant of a weighted graph, see for instance 3.15 of [9]; note that

the determinant of the empty weighted graph is equal to 1.



COMPLETE INTERSECTION SURFACES WITH TRIVIAL MAKAR-LIMANOV INVARIANT 11

is well known that p, c are integers satisfying 1 ≤ p ≤ c and gcd(p, c) = 1; thus
(
p
c

)
is

indeed a tableau.

4.13.3. More generally, assume that h(S,K,C) ≥ 1 and let j1 < · · · < jh (where
h = h(S,K,C)) be the elements of{

j | 1 ≤ j ≤ n and πj is sprouting with respect to (S,C)
}
.

Note that j1 = 1 and also define jh+1 = n + 1 and E0 = C. For each ν ∈ {1, . . . , h},
let Kν =

{
Pi | jν ≤ i < jν+1

}
; then

(Sjν−1, Kν , Ejν−1) satisfies condition (∗) of 4.13 and h(Sjν−1, Kν , Ejν−1) = 1,

so it makes sense to define
(
pν
cν

)
= T (Sjν−1, Kν , Ejν−1) as in 4.13.2. This defines

(
pν
cν

)
for ν = 1, . . . , h. We may therefore define

T (S,K,C) = ( p1 ··· phc1 ··· ch ) .

4.14. Remarks. Suppose that (S,K,C) satisfies condition (∗) of 4.13 and let the
notation (Pi, πi, Ei, etc.) be as in 4.13.

(a) The number of columns of the tableau T (S,K,C) is equal to the number
h(S,K,C) of blowings-up among π1, . . . , πn which are sprouting with respect
to (S,C). In particular, T (S,K,C) = 1 if and only if K = ∅; and T (S,K,C)
has 1 column if and only if K 6= ∅ and π1 is the only sprouting blowing-up.

(b) K = KC if and only if T (S,K,C) =
(

1
c

)
for some c ≥ 1 (indeed, K = KC is

equivalent to “h(S,K,C) = 1 and En is a neighbor of C̃K in diagram (3)”; cf. 4.9
for the definition of KC). Also, K is a singleton if and only if T (S,K,C) =

(
1
1

)
.

(c) If T (S,K,C) has at least two columns and j is any element of {2, . . . , n} such
that πj is sprouting then

(S,K ′, C) and (Sj−1, K
′′, Ej−1) satisfy condition (∗) of 4.13 and there

holds T (S,K,C) = T (S,K ′, C)T (Sj−1, K
′′, Ej−1),

where we define K ′ = {P1, . . . , Pj−1} and K ′′ = {Pj, . . . , Pn}.

Given the importance of 4.13, we give:

4.15. Example. We use the following notations: Si
πi−→ Si−1 is the blowing-up of Si−1

at Pi ∈ Si−1, Ei = π−1
i (Pi) ⊂ Si, and if Γ ⊂ Si is a curve and j > i then the strict

transform of Γ on Sj is denoted by the same symbol Γ. We consider a sequence of

blowings-up S5
π5−→ · · · π2−→ S1

π1−→ S0 = S satisfying the following conditions.
Let C ⊂ S be a nonsingular curve, let P1 ∈ S0 = S be any point of C, let P2 ∈ S1

be the point E1 ∩C, let P3 ∈ S2 be the point E2 ∩C, let P4 ∈ S3 be the point E2 ∩E3,
and let P5 ∈ S4 be a point of E4 which does not belong to E2 ∪ E3.

This gives S5
π5−→ · · · π2−→ S1

π1−→ S0 = S, and K = {P1, . . . , P5} is a concentric cluster
on S. Clearly, (S,K,C) satisfies condition (∗) of 4.13. Also suppose that C ′ ⊂ S is a
nonsingular curve such that C ′ 6= C and (C ′ · C)P1 = 2; then (S,K,C ′) also satisfies
condition (∗) of 4.13. We compute the tableaux T (S,K,C) and T (S,K,C ′).
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(a) (S,K,C). Since π1 and π5 are the blowings-up which are sprouting with respect
to (S,C), T (S,K,C) has two columns: T (S,K,C) = ( p1 p2c1 c2 ). Using the clusters K1 =
{P1, P2, P3, P4} on S and K2 = {P5} on S4, we find that

(
p1
c1

)
= T (S,K1, C) and(

p2
c2

)
= T (S4, K2, E4). The dual graphs of (π1 ◦ · · · ◦ π4)−1(C) and π−1

5 (E4) are

r r r r r
C E3 E4 E2 E1

−2 −1 −3 −2︸ ︷︷ ︸
2

︸ ︷︷ ︸
5

and r r
E4 E5

−1︸︷︷︸
1

︸︷︷︸
1

where, in the first (resp. the second) graph, the weight of C (resp. of E4) is not indicated,
as it is irrelevant; so T (S,K1, C) =

(
2
5

)
and T (S4, K2, E4) =

(
1
1

)
, and consequently

T (S,K,C) = ( 2 1
5 1 ).

(b) (S,K,C ′). As π1, π3, π5 are the blowings-up which are sprouting with respect to
(S,C ′), we have 3 columns: T (S,K,C ′) = ( p1 p2 p3c1 c2 c3 ). LetK1 = {P1, P2}, K2 = {P3, P4},
and K3 = {P5}, then T (S,K1, C) =

(
p1
c1

)
, T (S2, K2, E2) =

(
p2
c2

)
, and T (S4, K3, E4) =(

p3
c3

)
. The reader may verify that T (S,K,C ′) = ( 1 1 1

2 2 1 ).

4.16. Notation. Let K be a cluster on S and � a total order on K extending the
natural order. Write K = {P1, . . . , Pn} where P1 ≺ · · · ≺ Pn. Given a subset A of K,
define the n× 1 matrix

1A =

( a1
...
an

)
where ai =

{
1 if Pi ∈ A,
0 if Pi /∈ A.

Given (S,K,C) satisfying condition (∗) of 4.13, we will need (in section 7) to compute
the products Q∗(K)1K and Q∗(K)1KC (Q∗(K) is defined in 4.10, KC in 4.9, 1K and
1KC in 4.16). Result 4.18 answers this question, but first we need the following:

4.17. Notation. Let p, c be integers satisfying 1 ≤ p ≤ c and gcd(p, c) = 1 (or equiva-
lently,

(
p
c

)
∈ T). Consider the Euclidean algorithm of (x0, x1) = (c, p):

x0 = q1x1 + x2

...

xs−2 = qs−1xs−1 + xs

xs−1 = qsxs

where all xi and qi are positive integers and x1 > · · · > xs = 1. Then we define:

X(p, c) =
(
x1 . . . x1︸ ︷︷ ︸

q1

x2 . . . x2︸ ︷︷ ︸
q2

. . . xs . . . xs︸ ︷︷ ︸
qs

)
,

which is a 1× t matrix with t = q1 + · · ·+ qs.
Remark. It is easily verified that

∑s
i=1 qixi = c+ p− 1 (this will be used later).

4.18. Proposition. Suppose that (S,K,C) satisfies condition (∗) of 4.13 and write

T (S,K,C) = ( p1 ··· phc1 ··· ch ) .
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Suppose that K 6= ∅ (or equivalently, h ≥ 1). For each j ∈ {1, . . . , h}, define ĉj =∏h
i=j+1 ci (so in particular ĉh−1 = ch and ĉh = 1).

(a) Q∗(K) =
(
ĉ1X(p1, c1) · · · ĉhX(ph, ch)

)
(b) If we write K = {P1, . . . , Pn} where P1 < · · · < Pn, then KC = {P1, . . . , Pm}

where m = dc1/p1e.6
(c) Q∗(K)1K =

∑h
i=1 ĉi(ci + pi − 1) and Q∗(K)1KC =

∏h
i=1 ci.

The rest of the section is devoted to the proof of 4.18.

4.18.1. Lemma. Suppose that (S,K,C) satisfies condition (∗) of 4.13 and that T (S,K,C) =(
p
c

)
with p 6= 1. Define q and r by

c = qp+ r (q, r ∈ N, 0 < r < p).

With notations (S = S0
π1←− S1

π2←− · · · πn←− Sn, Pi, Ei) as in 4.13, the following hold:

(a) KC = {P1, . . . , Pq+1}
(b) Let K ′ = {Pq+1, Pq+2, . . . , Pn}; then K ′ is a cluster on Sq, (Sq, K

′, Eq) satisfies
condition (∗) of 4.13 and T (Sq, K

′, Eq) =
(
r
p

)
.

Proof. One can check that the dual graph of (π1 ◦ · · · ◦ πn)−1(C) in Sn is as follows:

(4)
r r r r r r r r r r. . . . . . . . .

C̃K ẼKq+1 ẼKn ẼKq ẼKq−1 ẼK2 ẼK1

−1 −2 −2 −2

︸ ︷︷ ︸
p ︸ ︷︷ ︸

c

︸ ︷︷ ︸
r

where, as usual, the numbers under the braces are determinants. In particular, ẼK
q+1

meets C̃K in Sn = SK , so Pq+1 is the greatest element of KC and (a) is true.
Let K ′ = {Pq+1, Pq+2, . . . , Pn}; then it is clear that K ′ is a cluster on Sq and that

(Sq, K
′, Eq) satisfies condition (∗) of 4.13. Moreover, (4) shows that the dual graph of

(πq+1 ◦ · · · ◦ πn)−1(Eq) in Sn isr r r r r r. . . . . .
ẼKq+1 ẼKn ẼKq

−1

︸ ︷︷ ︸
p

︸ ︷︷ ︸
r

and this picture immediately implies that T (Sq, K
′, Eq) =

(
r
p

)
. So we are done. �

4.18.2. Lemma. Suppose that (S,K,C) satisfies condition (∗) of 4.13 and that

T (S,K,C) =

(
p

c

)
.

(a) If we write K = {P1, . . . , Pn} where P1 < · · · < Pn, then KC = {P1, . . . , Pm}
where m = dc/pe.

(b) The last row of Q(K) is Q∗(K) = X(p, c).

6For x ∈ R, let dxe = min
(
[x,∞) ∩ Z

)
.
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Proof. By 4.18.1, assertion (a) is true whenever p 6= 1; it is a simple matter to verify
that it continues to be true when p = 1. Assertion (b) is proved by induction on
the number s of equations in the Euclidean algorithm (we let the notation be as in
4.17). If s = 1 then p = 1, in which case the claim is easy to prove. Assume that
s > 1, i.e., that p 6= 1. Write K ′ = {Pq1+1, Pq1+2, . . . , Pn}. By 4.18.1, (Sq1 , K

′, Eq1)
satisfies condition (∗) of 4.13 and T (Sq1 , K

′, Eq1) =
(
x2
x1

)
. The number of equations in

the Euclidean algorithm of (x1, x2) is precisely s − 1, so by the inductive hypothesis
the Lemma is true for the triple (Sq1 , K

′, Eq1). This gives:

(a′) K ′Eq1 = {Pq1+1, . . . , Pq1+m}, where m = dx1/x2e
(b′) Q∗(K

′) =
(
x2 . . . x2︸ ︷︷ ︸

q2

. . . xs . . . xs︸ ︷︷ ︸
qs

)
.

(Remark: until the end of the proof, we use the definition of m given in (a′), not the
one given in the statement of the lemma.) It follows that

Q∗(K) =
(
a1 . . . aq1 x2 . . . x2︸ ︷︷ ︸

q2

. . . xs . . . xs︸ ︷︷ ︸
qs

)
where, for each j ∈ {1, . . . , q1}, aj is the coefficient of En in the divisor E

K

j ∈ Div(Sn).
To complete the proof, there only remains to show that aj = x1 for all j = 1, . . . , q1.

For each j ∈ {1, . . . , q1}, let Ẽj ⊂ Sq1 be the strict transform of Ej and set

Dj = Ẽj + Ẽj+1 + · · ·+ Ẽq1 ∈ Div(Sq1).

Then Dj is the total transform of Ej in Sq1 and consequently E
K

j = D
K′

j . Thus

E
K

j = D
K′

j = D̃K′

j +
∑
P∈K′

eP (Dj)E
K′

P

by 4.8. Now eP (Dj) = eP (Eq1) for all P ∈ K ′, and by (b′) we have

eP (Eq1) =

{
1, if P ∈ {Pq1+1, . . . , Pq1+m},
0, if P ∈ K ′ \ {Pq1+1, . . . , Pq1+m}.

So E
K

j = D̃K′
j +

∑m
i=1 E

K′

q1+i. The coefficient of En in this divisor is

aj = sum of the first m entries in the row Q∗(K
′) =

(
x2 . . . x2︸ ︷︷ ︸

q2

. . . xs . . . xs︸ ︷︷ ︸
qs

)
.

Taking into account that

m = dx1/x2e =

{
q2 + 1, if x2 6= 1,

q2, if x2 = 1,

we obtain aj = x1 in all cases, which completes the proof. �

4.18.3. Lemma. Suppose that (S,K,C) satisfies condition (∗) of 4.13 and let the no-
tation (πi : Si → Si−1, Pi, etc) be as in 4.13. Suppose that T (S,K,C) has at least
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two columns, let j > 1 be the greatest element of {1, . . . , n} such that πj is sprout-
ing with respect to (S,C), and consider the clusters K ′ = {P1, . . . , Pj−1} on S and
K ′′ = {Pj, . . . , Pn} on Sj−1. Define

(
p
c

)
= T (Sj−1, K

′′, Ej−1) and note that this is the
rightmost column of T (S,K,C). Then

Q∗(K) =
(
cQ∗(K

′) Q∗(K
′′)
)
.

That is, if Q∗(K
′) =

(
a1 · · · aj−1

)
and Q∗(K

′′) =
(
aj · · · an

)
, then

Q∗(K) =
(
ca1 · · · caj−1 aj · · · an

)
.

Proof. It is clear that Q∗(K) =
(
α1 · · · αj−1 aj · · · an

)
where, for each ν ∈

{1, . . . , j − 1}, αν is the coefficient of En in the divisor E
K

ν ∈ Div(Sn). The integer

ν being fixed, let D = E
K′

ν ∈ Div(Sj−1) and note that for each P ∈ K ′′ we have
eP (D) = aνeP (Ej−1). So the coefficient αν of En in

E
K

ν = D
K′′

= D̃K′′ +
∑
P∈K′′

eP (D)E
K′′

P = D̃K′′ + aν
∑
P∈K′′

eP (Ej−1)E
K′′

P

is αν = aνy, where y denotes the unique entry of the following 1× 1 matrix:

Q∗(K
′′) ·

(
ePj (Ej−1)

...
ePn (Ej−1)

)
.

Now y is the sum of the first m entries of Q∗(K
′′), where m = |K ′′Ej−1

|. Recall that

T (Sj−1, K
′′, Ej−1) =

(
p
c

)
and let qi, xi be the natural numbers determined by the Eu-

clidean algorithm of (x0, x1) = (c, p) (notation as in 4.17). Then 4.18.2 implies that
m = dc/pe and that

Q∗(K
′′) =

(
x1 . . . x1︸ ︷︷ ︸

q1

x2 . . . x2︸ ︷︷ ︸
q2

. . . xs . . . xs︸ ︷︷ ︸
qs

)
,

so y = x0 = c and αν = aνc. This proves the Lemma. �

Proof of 4.18. We prove (a) and (b) by induction on h. By 4.18.2, the result is true
when h = 1. Assume that h > 1. As in 4.13.3, let j > 1 be the greatest element of
{1, . . . , n} such that πj is sprouting and consider the clusters K ′ = {P1, . . . , Pj−1} and
K ′′ = {Pj, . . . , Pn}. Then the definition of T (S,K,C) gives

T (S,K ′, C) =
( p1 ··· ph−1
c1 ··· ch−1

)
and T (Sj−1, K

′′, Ej−1) =
(
ph
ch

)
.

Now 4.18.3 implies that Q∗(K) = (chQ∗(K
′) Q∗(K

′′)) and the inductive hypothesis
gives

Q∗(K
′′) = X(ph, ch) = ĉhX(ph, ch)

Q∗(K
′) =

(
ĉ′1X(p1, c1) · · · ĉ′h−1X(ph−1, ch−1)

)
with ĉ′j =

∏h−1
i=j+1 ci = ĉj/ch. This proves assertion (a).
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As πj is sprouting we have Pj /∈ C̃K′ , so KC ⊆ K ′ and hence KC = K ′C . By the
inductive hypothesis, K ′C = {P1, . . . , Pm} where m = dc1/p1e, so (b) is proved.

It was remarked at the end of 4.17 that the sum of all entries in X(p, c) is c+ p− 1;
this together with assertion (a) gives the first part of assertion (c). To prove the last
claim, let m = dc1/p1e; then, by assertion (b), the product Q∗(K)1KC is the sum of the
first m entries of Q∗(K), which is equal to the sum of the first m entries of ĉ1X(p1, c1).

We leave it to the reader to verify that this is equal to
∏h

i=1 ci. �

5. Further properties of clusters

The aim of this section is to prove 5.3 and 5.5, which appear to be new results in
the theory of clusters. The first one is very general. The second one has been designed
for a specific use, but it turns out that the situation to which it applies is still fairly
general. The two results are of interest for their own sake.

Result 5.3 is needed for proving 5.5, and 5.5 is used in the proof of 8.3.

Throughout, we fix a nonsingular projective surface S over an algebraically closed
field, and we consider clusters on S.

5.1. Definition. Let K be a cluster on S and (Q,G) a pair such that G ⊂ S is a
nonsingular curve and Q is a minimal element of K satisfying Q ∈ G. Let � be a
total order on K extending the natural order ≤, and write K = {P1, . . . , Pn} where
P1 ≺ · · · ≺ Pn. We say that (K,�) is (Q,G)-exhaustive if, for each i ∈ {1, . . . , n}
satisfying Pi ≥ Q, the conditions (a) and (b) below are satisfied.

We introduce the notation which is needed for stating these conditions. Consider
the subcluster Ki = {P1, . . . , Pi} of K (where i is such that Pi ≥ Q) and factor πK as

SK
πK\Ki−−−→ SKi

πKi−−→ S. Let Gi be the dual graph of π−1
Ki

(G) in SKi ; note that Gi is a tree

and that ẼKi
Pi

and G̃Ki are distinct vertices of it; let

(5) r r . . . rẼ
Ki
Pi C1 Cs (where Cs = G̃Ki and s ≥ 1)

be the unique simple path in Gi from ẼKi
Pi

to G̃Ki . Then the conditions that are required
to hold are the following:

(a) If s ≥ 2 then Cs−1 ∩ Cs ∩ cent(πK\Ki) = ∅;
(b) if s > 2 then (C2 ∪ · · · ∪ Cs−1) ∩ cent(πK\Ki) = ∅.

5.2. Remark. Let K be a cluster on S, G ⊂ S a nonsingular curve, Q a minimal
element of K satisfying Q ∈ G and � a total order on K extending the natural order.
Also consider the subcluster K ′ =

{
x ∈ K | x ≥ Q

}
of K and the restriction �′ of �

to K ′. Then (K,�) is (Q,G)-exhaustive if and only if (K ′,�′) is (Q,G)-exhaustive.

5.3. Lemma. Let K be a cluster on S, let Q1, . . . , Qr be distinct minimal elements of K
and G1, . . . , Gr nonsingular curves on S such that Qi ∈ Gi for all i (where G1, . . . , Gr

are not necessarily distinct). Then there exists a total order � on K which extends
the natural order and such that (K,�) is simultaneously (Qi, Gi)-exhaustive for all
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i = 1, . . . , r. Moreover, given an arbitrary total order �0 on the set {Q1, . . . , Qr}, we
can choose � so that its restriction to {Q1, . . . , Qr} be �0.

Proof. We first prove the following special case:

(6) Let K be a cluster on S which has a unique minimal element Q, and let G ⊂ S
be a nonsingular curve such that Q ∈ G. Then there exists a total order � on
K which extends the natural order and such that (K,�) is (Q,G)-exhaustive.

Let K ′ be any subcluster of K such that K ′ 6= K. Factor πK as

SK
πK\K′−−−−−→ SK′

πK′−−−→ S

and let D be the unique SNC-divisor of SK′ such that π−1
K′ (G) = supp(D). Note that

the dual graph G = G(SK′ , D) of D in SK′ is a tree and consider the vertex G̃K′ of G.
If Di is an irreducible component of D then let d(Di) be the distance, in the tree G,

between the vertices G̃K′ and Di (i.e., the length of the unique simple path in G going

from G̃K′ to Di.) If x ∈ D then let D1, . . . , Dn be the distinct irreducible components
of D such that x ∈ Di (so n = 1 or 2) and set

f(x) =
(

min
{
d(Di) | 1 ≤ i ≤ n

}
, max

{
d(Di) | 1 ≤ i ≤ n

})
.

This defines a set map f : D → N2. Let N2 be ordered by the lexicographic order and
define a strict partial order C on the set D by stipulating that

for any x, y ∈ D, xC y ⇐⇒ f(x) <lex f(y).

Note that cent(πK\K′) is a nonempty finite set of points of D; by a satellite of K ′, we

mean a minimal element of
(

cent(πK\K′),C
)
.7 We stress that if K ′ is any subcluster of

K such that K ′ 6= K then there exists at least one satellite P of K ′, and for any such
P , K ′ ∪ {P} is a subcluster of K. It follows that there exists at least one sequence

∅ ⊂ {P1} ⊂ {P1, P2} ⊂ · · · ⊂ {P1, . . . , Pn} = K

of subclusters of K such that, for each i ∈ {1, . . . , n}, Pi is a satellite of {P1, . . . , Pi−1}
(in particular P1 = Q is the unique satellite of ∅). Define a total order � on K by
P1 ≺ · · · ≺ Pn and note that � extends the natural order.

We claim that (K,�) is (Q,G)-exhaustive. To see this, fix i ∈ {1, . . . , n} and let
us verify that conditions (a) and (b) of 5.1 are satisfied for Pi ∈ K. Consider the
factorization

SK = Sn
πn−−→ Sn−1

πn−1−−−−→ · · · π1−−→ S0 = S

of πK : SK → S, where πj : Sj → Sj−1 is the blowing-up of Sj−1 at Pj. Then

Sn πK\Ki

//

πK\Ki−1

%%
Si πi

//

πKi

%%
Si−1 πKi−1

// S0

7In other words, the elements P ∈ cent(πK\K′) satisfying f(P ) = min
{
f(x) | x ∈ cent(πK\K′)

}
are the satellites of K ′.
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where Ki−1 = {P1, . . . , Pi−1}, Ki = {P1, . . . , Pi−1, Pi} and Pi is a satellite of Ki−1. This
means that Pi is a minimal element of (M,C), where we define M = cent(πK\Ki−1

).
Let the notation be as in (5). There is nothing to prove if s = 1, so assume that s ≥ 2;

note that πi(C1), . . . , πi(Cs) are distinct curves on Si−1. If some point x ∈ C2∪· · ·∪Cs
belongs to cent(πK\Ki) then y = πi(x) must lie on πi(C2)∪ · · · ∪πi(Cs) and must be an

element of M ; as Pi ∈ πi(C1) \
(
πi(C2) ∪ · · · ∪ πi(Cs)

)
, the definition of the relation C

on M implies that y C Pi, which contradicts the fact that Pi is a satellite of Ki−1. So,
such a point x does not exist and consequently (C2 ∪ · · · ∪ Cs) ∩ cent(πK\Ki) = ∅. It
follows that (a) and (b) hold for Pi. So (K,�) is (Q,G)-exhaustive and (6) is proved.

Now suppose that K, Q1, . . . , Qr and G1, . . . , Gr satisfy the hypothesis of 5.3. For
each i ∈ {1, . . . , r}, let Ki =

{
x ∈ K | x ≥ Qi

}
; also define Kr+1 = K \ (

⋃r
i=1 Ki).

Then K =
⋃r+1
i=1 Ki where K1, . . . , Kr+1 are pairwise disjoint subclusters of K and, for

each i ≤ r, Ki has exactly one minimal element Qi. It follows from (6) that, for each
i ∈ {1, . . . , r}, there exists a total order �i on Ki which extends the natural order
and such that (Ki,�i) is (Qi, Gi)-exhaustive; let also �r+1 be any total order on Kr+1

which extends the natural order, and let �0 be an arbitrary total order on the set K0 =
{Q1, . . . , Qr}. Choose a total order � on K such that, for each i ∈ {0, 1, . . . , r + 1},
the restriction of � to Ki is �i. Then � extends the natural order on K, because if
x ∈ Ki, y ∈ Kj and 1 ≤ i < j, then x, y are not comparable by natural order. By 5.2,
(K,�) is (Qi, Gi)-exhaustive for each i ∈ {1, . . . , r}. �

Recall from the introduction of section 4 that S∗ is the set of “points over S.”

5.4. Definition. Any nonsingular curve G ⊂ S determines a map TG : S∗ → T as
follows. Given P ∈ S∗ we consider the set KP =

{
x ∈ S∗ | x ≤ P

}
, which is

a nonempty concentric cluster over S, and the unique minimal element Q of KP . If
Q ∈ G then (S,KP , G) satisfies condition (∗) of 4.13, so the tableau T (S,KP , G) ∈ T

is defined; we define TG(P ) = T (S,KP , G) in this case. If Q /∈ G then set TG(P ) = 1

(the empty tableau). Note that TG(P ) 6= 1 if and only if Q ∈ G.

5.5. Proposition. Let (K,G, P1, Z) be such that K is a nonempty cluster on S, G ⊂ S
is a nonsingular curve, P1 is a minimal element of K such that P1 ∈ G, and Z ⊂ SK
is a (possibly empty) finite union of curves satisfying:

(i) Z is a proper subset of π−1
K (P1)

(ii) the dual graph of L = G̃K ∪ Z in SK is a linear chain

(iii) ẼK
P1

is either included in Z or disjoint from Z
(iv) P1 is not a maximal element of KG

(v) each irreducible component C of Z satisfies (C2)SK ≤ −2.

Then there exists P ∈ K satisfying P ≥ P1, ẼK
P ∩ L 6= ∅ and ẼK

P * L, and such that
the tableau TG(P ) is one of the following:

(a) TG(P ) =
(
p
c

)
for some p, c such that 1 ≤ p < c

(b) TG(P ) =
(
p 1
c N

)
for some p, c,N such that 1 ≤ p < c and N ≥ 1.
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Proof. First consider the case where Z = ∅. Let P be a maximal element of
{
x ∈ KG |

x ≥ P1

}
. Then P ≥ P1 and P is a maximal element of KG; consequently ẼK

P ∩L 6= ∅,

ẼK
P * L and TG(P ) = T (S,KP , G) =

(
1
c

)
for some c ≥ 1. If c = 1 then P = P1, which

contradicts (iv), so in fact c > 1 and TG(P ) is of the form displayed in (a).
From now-on, assume that Z 6= ∅. As Z is a nonempty proper subset of π−1

K (P1),
the set

(7) A =
{
P ∈ K | ẼK

P ∩ Z 6= ∅ and ẼK
P * Z

}
is nonempty. By 5.3, we may choose a total order � on K which extends the natural
order ≤, such that (K,�) is (P1, G)-exhaustive, and such that P1 is the least element
of (K,�); write K = {P1, . . . , Pn}, P1 ≺ · · · ≺ Pn. Let P be the least element of

(A,�). Then P satisfies P ≥ P1, ẼK
P ∩ L 6= ∅ and ẼK

P * L.

We claim that TG(P ) is as required by the Proposition, i.e., satisfies (a) or (b).

This claim is clear if P ∈ KG. Indeed, we then have TG(P ) =
(

1
c

)
for some c ≥ 1,

and if c = 1 then P = P1, so P1 ∈ A, which contradicts (iii); so in fact c > 1 and
TG(P ) is of the form displayed in (a). So from now-on we may assume that

(8) P /∈ KG.

Let i be such that P = Pi and define

KP =
{
Q ∈ K | Q ≤ P

}
and Ki = {P1, . . . , Pi} =

{
Q ∈ K | Q � P

}
.

Then KP ⊆ Ki are subclusters of K, so πK factors as in the following diagram

(9)

SK

πK\Ki
��

πK

$$J
JJJJJJJJJJJJJJJJJJJJJJJJJ

SKi

πKi\KP ""D
DD

DD
DD

D πKi

**TTTTTTTTTTTTTTTTTTTTTTT

SKP πKP

// S

G = G
(
SK , π

−1
K (G)

)
Gi = G

(
SKi , π

−1
Ki

(G)
)

GP = G
(
SKP , π

−1
KP

(G)
)

(note that Ki \KP is a cluster on SKP and K \Ki is a cluster on SKi) where we also
define the dual graphs G, Gi and GP (which are in fact trees). Let

(10) γi = r r . . . rẼ
Ki
P C1 Cs (where Cs = G̃Ki and s ≥ 1)

be the unique simple path in Gi going from ẼKi
P to G̃Ki . Observe that if s = 1 then

ẼKi
P meets G̃Ki in SKi , which contradicts (8); so:

(11) s ≥ 2.

We claim that if s > 2 then the following hold:

For each j ∈ {2, . . . , s− 1}, (C2
j )SKi ≤ −2;(12)

for each j ∈ {2, . . . , s− 1}, Cj is not a branch point of Gi.(13)
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Indeed, consider any j ∈ {2, . . . , s − 1}. Observe that the dual graph of L in SK is

connected and is a subgraph of the tree G; as G̃K ⊆ L and ẼK
P ∩ L 6= ∅, it follows

that the simple path γ in G going from ẼK
P to G̃K is included in L, except for its

initial vertex ẼK
P . As Cj−1, Cj, Cj+1 are vertices of γi, it follows that C̃K

j−1, C̃
K
j , C̃

K
j+1

are vertices of γ and consequently:

C̃K
j−1 ∪ C̃K

j ∪ C̃K
j+1 ⊆ L and C̃K

j ⊆ Z.

Because (K,�) is (P1, G)-exhaustive and P ≥ P1, the center of πK\Ki : SK → SKi is
disjoint from C2 ∪ · · · ∪ Cs−1 (this is 5.1(b)); so:

cent(πK\Ki) ∩ Cj = ∅.

In particular, (C2
j )Ki is equal to the self-intersection number of C̃K

j in SK , which is at

most (−2) by (v) (because we noted that C̃K
j ⊆ Z). So (12) is proved.

We prove (13) by contradiction: suppose that j ∈ {2, . . . , s− 1} is such that Cj is a

branch point of Gi. Then Cj has a neighbor ẼKi
R (in Gi) which does not belong to γi;

note that R ∈ Ki and R 6= P = Pi, so R ≺ P . We observed in the above paragraph

that cent(πK\Ki) ∩ Cj = ∅; as Cj meets each one of ẼKi
R , Cj−1 and Cj+1 in SKi , it

follows that C̃K
j still meets each one of ẼK

R , C̃K
j−1 and C̃K

j+1 in SK . So we have the
following subgraph of G:

r r r
r

C̃Kj−1 C̃Kj C̃Kj+1

ẼKR

Since C̃K
j−1 ∪ C̃K

j ∪ C̃K
j+1 ⊆ L and L does not have branch points, ẼK

R * L and hence

ẼK
R * Z; on the other hand, we have ẼK

R ∩ Z 6= ∅, because ẼK
R ∩ C̃K

j 6= ∅; so R ∈ A
(cf. (7)). We already observed that R ≺ P , so this contradicts the fact that P is the
least element of (A,�). This proves (13).

Now consider the unique simple path γP in GP going from ẼKP
P to G̃KP :

(14) γP = r r . . . rẼ
KP
P D1 Dr (where Dr = G̃KP and r ≥ 1).

Then

(15) r ≥ 2,

for otherwise we would have a contradiction with (8). We claim that if r > 2 then:

(16) For each j ∈ {2, . . . , r − 1}, Dj is not a branch point of GP .

Indeed, suppose that j ∈ {2, . . . , r − 1} is such that Dj is a branch point of GP . Then
the strict transform of Dj via πKi\KP : SKi → SKP is a branch point of Gi and is equal
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to Cj1 for some j1 ∈ {2, . . . , s − 1}; this contradicts (13), so (16) is proved. It follows
from (16) that TG(P ) is one of the following tableaux:8

(a′) TG(P ) =
(

1
1

)ν(p
c

)
for some ν, p, c such that ν ≥ 0 and 1 ≤ p < c

(b′) TG(P ) =
(

1
1

)ν ( p 1
c N

)
for some ν, p, c,N such that ν ≥ 0, 1 ≤ p < c and N ≥ 1

(c′) TG(P ) =
(

1
1

)ν
for some ν ≥ 1.

Indeed, if TG(P ) is not one of them then TG(P ) =
(

1
1

)ν(p
c

)
T ′ where ν ≥ 0,

(
p
c

)
6=
(

1
1

)
,

T ′ ∈ T, and where T ′ is neither 1 nor of the form
(

1
N

)
. Recall that TG(P ) = T (S,KP , G)

where KP is concentric. Write KP = {Q1, . . . , Qm} where P1 = Q1 < Q2 < · · · < Qm =
P , and factor πKP : SKP → S as

(17) SKP = Sm
πm−→ · · · π2−→ S1

π1−→ S0 = S,

where Sj
πj−→ Sj−1 is the blowing-up of Sj−1 at Qj ∈ Sj−1. Refer to 4.13 and 4.14 for

the following argument. As T (S,KP , G) =
(

1
1

)ν(p
c

)
T ′, the blowings-up π1, . . . , πν+1 are

sprouting, and at least one of πν+2, . . . , πm is sprouting; let ` be the least element of
{ν + 2, . . . ,m} such that π` is sprouting. Then πKP factors as

Sm
πK′′−−→ S`−1

πK′−−→ S0,

where K ′ = {Q1, . . . , Q`−1} and K ′′ = {Q`, . . . , Qm}, and we have T (S,K ′, G) =(
1
1

)ν(p
c

)
and T (S`−1, K

′′, E`−1) = T ′ (where Ej denotes the curve π−1
j (Qj) ⊂ Sj).

For j ∈ {0, . . . ,m}, let Hj be the dual graph of (π1 ◦ · · · ◦ πj)−1(G) in Sj. As(
p
c

)
6=
(

1
1

)
, E`−1 has two neighbors in H`−1 and consequently its strict transform in S`

is a branch point of H` (because π` is sprouting); so ẼK′′

`−1 is a branch point of Hm. As

T ′ 6= 1, it follows that K ′′ 6= ∅, so Em and ẼK′′

`−1 are distinct vertices of Hm. If these

two vertices are neighbors in Hm then T ′ =
(

1
N

)
for some N ≥ 1, which contradicts

our assumption; so Em and ẼK′′

`−1 are not neighbors. Also, our choice of ` implies that

` > 1 and hence that ẼK′′

`−1 is not the strict transform of G.

We have shown that GP = Hm has a branch point which is distinct from G̃KP ,
distinct from EP = Em, and which is not a neighbor of EP . As γP passes through
every branch point of GP , it follows that this branch point is one of D2, . . . , Dr−1,
which contradicts (16).

This proves that TG(P ) is one of the tableaux described in statements (a′–c′). To
complete the proof of the Proposition, we have to show that the first column of TG(P )
is not

(
1
1

)
. The following trivial fact will be used below:

(18) Let H′ be a weighted tree obtained from a weighted tree H by a finite se-
quence of blowings-up. Suppose that r ru v is a subgraph of H and thatr r r r. . .u vw1 wp is a subgraph of H′. If no wj is a branch point of
H′ or has weight (−1) in H′, then p = 0, i.e., u, v are neighbors in H′.

8The notation uses the fact that the set T of tableaux is a monoid; for instance
(
1
1

)ν
is the tableau

( 1 ··· 1
1 ··· 1 ) where there are ν columns.
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Let us first prove:

(19) The point Dr−1 ∩Dr of SKP does not belong to cent(πK\KP ).

Refer to (14) and (9) for the notation, and recall that r ≥ 2 by (15) (so that Dr−1 and

EP are distinct vertices in γP ). As Dr−1 is a vertex of γP distinct from EP and G̃KP ,

it follows that D̃Ki
r−1 is a vertex of γi distinct from ẼKi

P and G̃Ki ; thus D̃Ki
r−1 = Cj for

some j ∈ {1, . . . , s − 1}. Now Gi is obtained from GP by a sequence of blowings-up,

r rDr−1 G̃KP is a subgraph of GP and r r r r. . .
D̃
Ki
r−1 G̃KiCj+1 Cs−1

is a subgraph of Gi; by

(13), (12) and (18), it follows that D̃Ki
r−1 and G̃Ki are neighbors in Gi.

Consider the factorization SK
πK\Ki−−−→ SKi

πKi\KP−−−−→ SKP of πK\KP and let Q ∈ SKP be

the point Dr−1 ∩Dr. We showed that D̃Ki
r−1 and G̃Ki meet in SKi , so Q /∈ cent(πKi\KP )

and π−1
Ki\KP (Q) is the point Cs−1 ∩ Cs in SKi ; now this point does not belong to

cent(πK\Ki) because (K,�) is (P1, G)-exhaustive, Pi ≥ P1 and s ≥ 2. Consequently
π−1
K\KP (Q) is a single point, which proves (19).

Consider the concentric subcluster X =
{
x ∈ KG | x ≥ P1

}
of K. We claim:

(20) X ⊆ KP .

Indeed, suppose that X * KP and consider the least element Q of X \KP . Then Q
is a minimal element of K \ KP and hence a proper point of SKP and an element of
cent(πK\KP ). As Q ∈ X, Q must be the point Dr−1 ∩ Dr. This contradicts (19), so
(20) is true.

Let us use again the notation KP = {Q1, . . . , Qm}, P1 = Q1 < · · · < Qm = P , and
factor πKP as in (17). By (iv), X contains at least two elements; so (20) implies that
Q1, Q2 ∈ X, which implies that π2 (see (17)) is a subdivisional blowing-up. Hence, the
first column of T (S,KP , G) is not

(
1
1

)
. This completes the proof. �

6. Construction of certain normal surfaces

The aim of this section is to define a set map P→ C and study some of its properties.
We define C in 6.1, P in 6.3, and the map P→ C in 6.5. The map P→ C will serve as
a framework for studying a certain class of surfaces.

All varieties are over an algebraically closed field k of characteristic zero.

6.1. Notation. Let C be the set of pairs (U, ρ) where U is a normal surface which is
connected at infinity, ρ : U → V is a surjective morphism whose general fiber is an
affine line, and V is a curve isomorphic to an open subset W of P1 such that W 6= ∅
and W 6= P1. Note that the fact that ρ exists implies that U is also rational. Elements
(U, ρ) and (U ′, ρ′) of C (where ρ : U → V and ρ′ : U ′ → V ′) are said to be equivalent
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if there exists a commutative diagram

U

ρ

��

∼= // U ′

ρ′

��
V

∼= // V ′

where the horizontal arrows are isomorphisms of varieties. The set of equivalence
classes is denoted C and the equivalence class of (U, ρ) ∈ C is denoted [U, ρ] ∈ C.

6.2. Notations. Until the end of section 6, let S,L,∞, F,∆ be the following objects:

• S = F0 = P1 × P1 and L =
{
{x} × P1 | x ∈ P1

}
(so L is a pencil on S);

• choose a point of P1 and call it “∞”;
• F = {∞} × P1 (so F ∈ L);
• ∆ = P1 × {∞} (so ∆ is a section of L and (∆2)S = 0).

6.3. Definition. Let P be the set of pairs (K,B) satisfying:

• K is a cluster on S all of whose minimal elements are points of S \ (F ∪∆);
• B is the support of a divisor on SK (where πK : SK → S denotes the blowing-up

of S along K) and satisfies F̃K ∪ ∆̃K ⊆ B ⊆ π−1
K (F ∪∆ ∪ G1 ∪ · · · ∪ Gs), for

some finite subset {G1, . . . , Gs} of L;
• each irreducible component C of B satisfies (C2)SK 6= −1.

For each (K,B) ∈ P we write B = B∞ ∪ E, where B∞ is the connected component

of B which contains F̃K ∪ ∆̃K and E is the union of the other connected components
of B. Observe that E ⊆ exc(πK) and that each irreducible component E of E satisfies
(E2)SK ≤ −2.

6.4. Remark. Let (K,B) ∈ P and let F1, . . . , Fn, C1, . . . , Ct denote the distinct ele-

ments of
{
G ∈ L | G̃K ⊆ B

}
, where Fi ∩ minK = ∅ and Ci ∩ minK 6= ∅. Then

n ≥ 1 (because F ∈ {F1, . . . , Fn}), t ≥ 0, and the dual graph G(SK , B∞) of B∞ in SK
has the form

(21) rr
r
HHH

HHH

...
...

�
��

�
��∆̃K

0

0

0

F̃K1

F̃Kn

mN1

mNt (n ≥ 1, t ≥ 0)

where N1, . . . , Nt are branches in which every vertex has weight ≤ −2 and C̃K
i is the

vertex of Ni which is adjacent to ∆̃K .

6.5. Definition. We proceed to define a set map from P to C. Let (K,B) ∈ P, and write
B = B∞ ∪ E as in 6.3. As E ⊆ exc(πK), paragraph 3.8 implies that E is algebraically

contractible in the sense of 3.7 and that πK : SK → S factors as SK
σ−−→ SK

π−−→ S,
where σ is the contraction of E and π is a proper birational morphism. Note that
σ(E) is exactly the singular locus of the normal complete surface SK (indeed, each
irreducible component E of E satisfies (E2)SK ≤ −2; so, for each connected component
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Ei of E, the point σ(Ei) must be singular). Let p1 : S = P1 × P1 → P1 be the first
projection and note that L (cf. 6.2) is the set of fibers of p1. We have:

SK
πK //

σ

  B
BB

BB
BB

B S
p1

��>
>>

>>
>>

>

SK

π

??��������

P1

Consider the set Γ(K,B) of pairs (U, ρ) satisfying:

6.5.1. U is a surface, ρ : U → V is a surjective morphism, and there exist open
immersions U ↪→ SK and V ↪→ P1 such that

(1) the diagram

SK
π //S

p1 //P1

U ρ
//?�

OO

V
?�

OO

is commutative;

(2) the image of U ↪→ SK is equal to the complement of σ(B∞) in SK;
(3) the image of V ↪→ P1 does not contain the point ∞ of P1.

We claim that Γ(K,B) ∈ C. To see this, let us first check that Γ(K,B) 6= ∅. Indeed,

let U ⊂ SK be the complement of σ(B∞) in SK , and let V ⊂ P1 be the image of
U via p1 ◦ π̄. Then restricting p1 ◦ π gives a surjective morphism ρ : U → V which
makes diagram 6.5.1(1) commute. Since the inverse image of ∞ ∈ P1 by p1 ◦ π is

π−1(F ) = σ(F̃K), which is included in σ(B∞) and hence disjoint from U , we have
∞ /∈ V . So (U, ρ) ∈ Γ(K,B).

We also note that if (U, ρ) is any element of Γ(K,B) then U is normal and connected

at infinity (because SK is normal and σ(B∞) is connected), and the general fiber of ρ
is an affine line (because if P is a general point of P1 then (p1 ◦ π)−1(P ) is a projective
line in SK which meets σ(B∞) in one point). This shows that Γ(K,B) ⊆ C. It is clear

that Γ(K,B) is an equivalence class, i.e., an element of C, and that (K,B) 7→ Γ(K,B)

defines a set map from P to C.
Let the notation (U(K,B), ρ(K,B)) stand for an arbitrary element of Γ(K,B). So the set

map that we have just defined is

P→ C, (K,B) 7→ [U(K,B), ρ(K,B)].

If it is convenient, we may choose U(K,B) to be the complement of σ(B∞) in SK .

6.6. Lemma. Let (K,B) ∈ P and let the notation be as in 6.5.

(a) There is an isomorphism of surfaces U(K,B) \ Sing(U(K,B)) ∼= SK \B.
(b) The dual graph G(SK , B∞) is a minimal element of G∞[U(K,B)] (cf. 3.5).

(c) Consider the morphism σ̂ : SK \ B∞ → SK \ σ(B∞) ∼= U(K,B) obtained by
restricting the morphism σ of 6.5. Then σ̂ is the minimal SNC-resolution of
singularities of U(K,B) (cf. 3.6) and σ̂−1(SingU(K,B)) = E. So the connected
components of E are the resolution loci of the singular points of U(K,B).
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Proof. Refer to 6.5 and take U = U(K,B) to be the complement of σ(B∞) in SK . Then
σ restricts to an isomorphism from SK \B to U \ Sing(U), so (a) is proved.

As σ also restricts to an isomorphism from a neighborhood of B∞ to a neighborhood
of σ(B∞), we see that σ(B∞) is a connected SNC-divisor of SK whose dual graph can
be identified with G(SK , B∞). As σ(B∞) is the complement of U , G(SK , B∞) ∈ G∞[U ].
From (21), we see that no vertex of G(SK , B∞) has weight (−1), so G(SK , B∞) is a
minimal element of G∞[U ]. So (b) is proved.

It is clear from 6.5 that σ : SK → SK is the minimal SNC-resolution of singularities
of SK . Assertion (c) follows from this. �

6.7. Proposition. The set map P→ C defined in 6.5 is surjective.

Proof. Let (U, ρ) ∈ C. Here, ρ : U → V is a surjective morphism with general fiber A1,
and V is isomorphic to an open subset W of P1 such that W 6= ∅ and W 6= P1.

Let σ : Û → U be a minimal SNC-resolution of singularities of U (cf. 3.6). Let

ρ̂ : Û → V be the composite Û
σ−→ U

ρ−→ V and note that ρ̂ is a surjective morphism
whose general fiber is A1. There exists a commutative diagram

(22)

Û
� �

i
//

ρ̂

��

U

ρ

��
V

� � j // P1

where the “↪→” are open immersions, U is a nonsingular projective surface, U \ Û is
the support of an SNC-divisor of U and ρ is a morphism. Here, when choosing the
open immersion j : V ↪→ P1, we make sure that ∞ ∈ P1 \ V (the point ∞ of P1 was
fixed at the beginning of the section). Let Λ be the base-point-free pencil on U which
corresponds to ρ. As the general fiber of ρ̂ is A1 and char k = 0, it follows that the
general fiber of ρ is a P1 which meets U \ Û in one point. Consequently, exactly one

irreducible component H of U \ Û is Λ-horizontal,9 and ρ restricts to an isomorphism
from H to P1. We summarize this as:

(23) Λ is a P1-ruling on U , exactly one irreducible component H of U \ Û is Λ-
horizontal, and H is a section of Λ.

So U \ Û is a tree of projective lines (by 3.13 and the fact that U is connected at

infinity). By parts (a), (c) and (e) of 3.13, if C is a vertical component of U \ Û
such that (C2)U = −1 then C meets at most two other irreducible components of

U \ Û , and the contraction of C yields a new diagram (22) in which U \ Û has one less
irreducible component. Consequently, any diagram (22) which minimizes the number

of irreducible components of U \ Û satisfies the additional condition:

(24) No Λ-vertical component C of U \ Û satisfies (C2)U = −1.

9A curve C ⊂ U is said to be Λ-vertical if it is included in the support of an element of Λ. If C is

not Λ-vertical, we say that it is Λ-horizontal.
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We choose such a diagram.
Since in (22) we arranged that∞ /∈ V , ρ−1(∞) is entirely contained in U\Û . By (24),

no irreducible component of ρ−1(∞) has self-intersection (−1); it follows (e.g. from part
(d) of 3.13) that ρ−1(∞) is an irreducible curve; let us use the notation F∞ = ρ−1(∞),

then F∞ ∈ Λ, so (F∞)2 = 0. Moreover, the vertex F∞ of the dual graph G(U,U \ Û)
has a unique neighbor in this graph, namely, H. Thus, by blowing-up U at a point
Q of the curve F∞ and then shrinking10 the strict transform of F∞, we may replace
the diagram (22) by another one in which the self-intersection number of H has either
increased by 1 (if Q ∈ F∞ \H) or decreased by 1 (if Q is the point F∞∩H); moreover,

this operation does not change the number of irreducible components of U \ Û , so the
new diagram still satisfies (24). It follows that we may choose a diagram (22) which
satisfies (24) and in which we have (H2)U = 0. We fix such a diagram until the end of
the proof. Note:

(25) Each irreducible component C of U \ Û satisfies (C2)U 6= −1.

Indeed, if C is an irreducible component of U \ Û then either C = H, in which case
(C2)U = 0, or C is Λ-vertical, in which case (C2)U 6= −1 by (24). So (25) is true.

In view of (23) and of the fact that (H2)U = 0, we may consider a birational mor-
phism π′ : U → F0 = S as in 3.12, with exc(π′) equal to the union of all Λ-vertical
curves in U disjoint from H. Composing π′, if necessary, with an automorphism of
S, we arrange π′∗(Λ) = L and π′(H) = ∆ (recall that the notations S,L,∆, F were
fixed at the beginning of section 6). We claim that there exists an automorphism θ of
S = P1 × P1 such that the morphism π = θ ◦ π′ : U → S still satisfies π∗(Λ) = L and
π(H) = ∆, and moreover makes the diagram

(26) U
π //

ρ

��

S

p1����
��

��
��

P1

commute. Indeed, the condition π′∗(Λ) = L implies that the two morphisms U
p1◦π′ //

ρ
//P1

determine the same pencil on U (namely, Λ), and hence that they differ by an auto-
morphism θ1 of P1 (θ1 ◦ p1 ◦ π′ = ρ). Let θ2 = id : P1 → P1, then θ = (θ1, θ2) has
the desired property. We have π(F∞) = F by commutativity of (26), and exc(π) is of
course equal to exc(π′), i.e., is the union of all Λ-vertical curves in U disjoint from H.

Let K be the cluster on S such that π is the blowing-up of S along K, i.e., U
π−→ S

is the same as SK
πK−→ S. Thus F̃K = F∞ and ∆̃K = H.

Recall from 3.6 that the set E = σ−1(SingU) is the support of an SNC-divisor of Û ;
in particular, it is a union of complete curves; so E is closed in U and is therefore the
support of an SNC-divisor of U . As (U \ Û) ∩ E = ∅, the set B = (U \ Û) ∪ E is the

10By 3.13(e), shrinking the strict transform of F∞ does yield a new diagram (22).
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support of an SNC-divisor of U . We claim that (K,B) ∈ P. To see this, we have to
verify the following conditions:

(i) all minimal elements of K are points of S \ (F ∪∆);

(ii) F̃K ∪∆̃K ⊆ B ⊆ π−1
K (F ∪∆∪G1∪· · ·∪Gs), for some finite subset {G1, . . . , Gs}

of L;
(iii) each irreducible component C of B satisfies (C2)SK 6= −1.

The set of minimal elements of K is precisely the center of π. Since exc(π) is disjoint
from F∞ ∪H, it follows that the center of π is disjoint from F ∪∆. So (i) is clear.

The inclusion F̃K ∪ ∆̃K ⊆ B is clear. To prove (ii), we have to show that if C is an
irreducible component of B then π(C) = ∆ or there exists G ∈ L such that π(C) ⊆ G.
Note that this is clear if C = H or C ⊆ exc(π). If C ⊆ E then C is a Λ-vertical curve

in U disjoint from H (since it is disjoint from U \ Û), so C ⊆ exc(π) and we are done

in that case. So we may assume that C ⊆ U \ Û , C 6= H, and C * exc(π); then C is
Λ-vertical and π(C) is a curve, so π(C) = G for some G ∈ L, and we are done proving
(ii).

In the last paragraph we noted that E ⊆ exc(π). It follows that each irreducible
component C of E satisfies (C2)U ≤ −1, and that if (C2)U = −1 then C is a contractible
vertex of the dual graph of E in U ; such a vertex cannot exist by part (iii) of 3.6, so
in fact we have (C2)U ≤ −2 for every irreducible component C of E. So, to prove (iii),

we may assume that C is an irreducible component of U \ Û ; then (C2)U 6= −1 follows
from (25). So (iii) is proved, and consequently (K,B) ∈ P.

There remains to show that the elements (U, ρ) and (U(K,B), ρ(K,B)) of C are equiva-
lent. To see this, we follow the definition of (U(K,B), ρ(K,B)) given in 6.5.

First note that the fact that U is connected at infinity implies that U \ Û is a

connected component of B; so B∞ = U \ Û and the “E” of the present argument is
equal to the “E” defined in 6.3. Let σ : SK → SK be the contraction of E, then (see

6.5) π = πK : SK → S factors as SK
σ−−→ SK

π−−→ S, for some π. Since σ and σ are

the contractions of E in Û and U respectively, and since Û is an open subset of U ,
there exists an open immersion U ↪→ SK which makes (I) a commutative square, in
the following diagram:

(27) U = SK
σ //

(I)

SK
π //

(II)

S
p1 // P1

Û σ
//

?�

i

OO

U
?�

OO

ρ // V
?�

j

OO

Note that the image of U ↪→ SK is the complement of σ(B∞), and that the image of
V ↪→ P1 does not contain the point∞; so, in order to prove that [U, ρ] = [U(K,B), ρ(K,B)],
it suffices to verify that diagram (II) commutes, in (27) (compare (II) with 6.5.1(1)).
Clearly, commutativity of (II) is a consequence of the following assertions:

(iv) σ is an epimorphism;
(v) the square (I) is commutative;
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(vi) the “external square” (I,II) is commutative, i.e., p1 ◦ π ◦ σ ◦ i = j ◦ ρ ◦ σ.

In fact, only (vi) needs to be explained: commutativity of (26) gives p1 ◦ π ◦ σ = ρ,
and ρ ◦ σ = ρ̂ by definition of ρ̂; so (vi) is simply the fact that (22) is a commutative
diagram.

Since (iv–vi) are true, (II) is commutative and hence [U(K,B), ρ(K,B)] = [U, ρ]. �

7. Properties of (K,B) and of U(K,B)

Throughout this section, varieties are over an algebraically closed field k of charac-
teristic zero, and S,L,∆, F are as in 6.2.

The purpose of section 6 is to define the map P → C, (K,B) 7→ [U(K,B), ρ(K,B)],
and to show that it is surjective (see 6.7). In the present section, our aim is to study
how the properties of the surface U(K,B) are related to those of the data (K,B). We
consider the following properties of U(K,B):

• U(K,B)
∼= A2 (in 7.1);

• U(K,B) is affine (in 7.4);
• U(K,B) \ SingU(K,B) has trivial canonical class (in 7.11).

7.1. Lemma. Let (K,B) ∈ P.

(a) K = ∅ if and only if U(K,B)
∼= V × A1 for some open subset V of P1 such that

V 6= P1. Moreover, if these conditions hold then B has |P1 \ V |+ 1 irreducible
components and ∆ ∪ F ⊆ B.

(b) U(K,B)
∼= A2 if and only if (K,B) = (∅,∆ ∪ F ).

Proof. (a) If K = ∅ then Definition 6.3 implies that B = ∆ ∪ F1 ∪ · · · ∪ Fn (for
some distinct F1, . . . , Fn ∈ L, where F ∈ {F1, . . . , Fn}) and that U(K,B) = S \ B. So
U(K,B)

∼= V × A1 where V is P1 minus n points, and B has |P1 \ V |+ 1 components.
Conversely, suppose that U(K,B)

∼= V × A1 where V is P1 minus q points, q ≥ 1.
Then

(28) rr
r
HHH...
��
�

0

v0

0

0

v1

vq

is an element of G∞[U(K,B)], and G(SK , B∞) (which is pictured in (21)) is also an
element of G∞[U(K,B)], by 6.6. So (21) and (28) are equivalent weighted graphs, and

consequently t = 0 in (21). This means that B∞ = ∆̃K ∪ F̃K
1 ∪ · · · ∪ F̃K

n for some
F1, . . . , Fn ∈ L, where Fi∩minK = ∅ for all i; consequently, exc(πK) ⊂ SK \B∞. The
fact that U(K,B) is nonsingular implies that E = ∅; so B = B∞ and SK\B∞ = U(K,B), so
SK \B∞ is affine and hence cannot contain a complete curve. Since exc(πK) ⊂ SK \B∞,
it follows that exc(πK) = ∅, so K = ∅.

(b) If (K,B) ∈ P satisfies U(K,B)
∼= A2, then (a) implies that K = ∅, that B has

2 irreducible components, and that ∆ ∪ F ⊆ B; so B = ∆ ∪ F . The converse is
trivial. �
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7.2. Remark. By 7.1, exactly one element (K,B) of P satisfies U(K,B)
∼= A2. So 6.7

implies:

up to equivalence 6.1, A2 admits exactly one surjective morphism
A2 → A1 with general fiber A1.

This is “Rentschler’s Theorem” [19]. (To recover Rentschler’s formulation, one uses
the well-known correspondence — cf. for instance 2.3 of [10] — between A1-fibrations
and kernels of nonzero locally nilpotent derivations.)

7.3. Notations. (1) Given a cluster K on S, define

L(K) =
{
G ∈ L | G contains some minimal element of K

}
.

(2) Given (K,B) ∈ P, define K(B) =
{
P ∈ K | ẼK

P ⊆ B
}

.

Regarding affineness of U(K,B), we have the following fact.

7.4. Lemma. Let (K,B) ∈ P. Then U(K,B) is affine if and only if

(∗) for all P ∈ K \K(B), ẼK
P ∩B∞ 6= ∅.

Moreover, if U(K,B) is affine then

(a) the surface SK defined in 6.5 is projective;

(b) G̃K ⊆ B for all G ∈ L(K).

Proof. Let the notation be as in 6.5 and take U = U(K,B) to be the complement of

σ(B∞) in SK .

Consider P ∈ K \K(B). Then ẼK
P * E, so σ(ẼK

P ) is a complete curve in SK . Since
σ restricts to an isomorphism from a neighborhood of B∞ to a neighborhood of σ(B∞),

σ(ẼK
P ) ⊂ U ⇐⇒ ẼK

P ∩B∞ = ∅.
So it is clear that if U is affine then (∗) holds.

Conversely, suppose that (∗) holds. Let us first show that

(29) any irreducible curve C̄ in SK meets σ(B∞).

Let C be the unique irreducible curve in SK such that σ(C) = C̄; observe that C * E

because σ(C) is one-dimensional. There are two cases. (i) If πK maps C to a curve

then πK(C)∩ (∆∪F ) 6= ∅, so C ∩ (∆̃K ∪ F̃K) 6= ∅, so C̄ ∩σ(B∞) 6= ∅. (ii) If πK maps

C to a point then C = ẼK
P for some P ∈ K; either P ∈ K(B), in which case C ⊆ B,

so C ⊆ B∞, so C̄ ∩ σ(B∞) 6= ∅, or P ∈ K \K(B), in which case C̄ ∩ σ(B∞) 6= ∅ by
(∗). This proves (29).

Let us say that a Weil divisor D ∈ Div(SK) is positive if D is effective, D 6= 0,
supp(D) is included in the nonsingular locus of SK , and each irreducible component C
of D satisfies (C ·D) > 0 in SK . Observe that if D is positive and C is an irreducible
curve included in the nonsingular locus of SK and satisfying C ∩ supp(D) 6= ∅ and
C * supp(D), then nD + C is positive for n > 0 large enough.
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Consider the curves F̄ , ∆̄ ⊂ SK defined by ∆̄ = σ(∆̃K) and F̄ = σ(F̃K). Then the
divisor ∆̄ + F̄ is positive. In view of the observation made in the preceding paragraph
and of the fact that σ(B∞) is connected, it follows that there exists a positive divisor
D satisfying supp(D) = σ(B∞). The fact that D is positive together with (29) imply:

(C ·D) > 0 in SK , for all irreducible curves C ⊂ SK .

So D is ample by Nakai’s criterion. It follows that U = SK \ supp(D) is affine and that
SK is projective. So (∗) implies that U(K,B) is affine and that (a) is true.

Finally, suppose that U(K,B) is affine (or equivalently, that (∗) holds) and consider
G ∈ L(K). Choose a minimal element Q of K such that Q ∈ G, and a maximal element

P of K such that P ≥ Q. Then P ∈ K \ K(B), so ẼK
P ∩ B∞ 6= ∅ by (∗), and this

implies that G̃K ⊆ B∞. So if U(K,B) is affine then (b) holds. �

7.5. Notation. P0 =
{

(K,B) ∈ P | the surface SK \B has trivial canonical class
}

.

Our next objective is to describe the set P0, and this is achieved in 7.11. We are
interested in P0 because of:

7.6. Lemma. For any (K,B) ∈ P, there holds

(K,B) ∈ P0 ⇐⇒ U(K,B) \ SingU(K,B) has trivial canonical class.

Proof. Follows from 6.6. �

If T is a subset of a group G, we write 〈T 〉 for the subgroup of G generated by T .

7.7. Lemma. Let (K,B) ∈ P and let � be a total order on K extending the natural
order. Then (K,B) ∈ P0 if and only if

(30) QK(B)1K ∈
〈{

QK(B)1KG | G ∈ Γ
}〉
,

where:

• Γ =
{
G ∈ L | G̃K ⊆ B and some minimal element of K lies on G

}
• K(B) =

{
P ∈ K | ẼK

P ⊆ B
}

• KG is defined in 4.9; 1K and 1KG are defined in 4.16
• Q = Q(K,�) and QK(B) are defined in 4.10.

Proof. Let (K,B) ∈ P and let πK : SK → S be the blowing-up of S along K. Then
(K,B) ∈ P0 if and only if SK \B has trivial canonical class, if and only if

(31) κSK ∈ B,
where κSK ∈ Cl(SK) denotes the canonical class of SK and B denotes the subgroup of
Cl(SK) generated by the irreducible components of B. Note that11

B =
〈
{F̃K , ∆̃K} ∪

{
G̃K | G ∈ Γ1

}
∪
{
ẼK
P | P ∈ K(B)

}〉
,

11We use the same notation for a divisor D ∈ Div(SK) and for its linear equivalence class D ∈
Cl(SK).
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where we define Γ1 =
{
G ∈ L | G̃K ⊆ B

}
. We have Γ ⊆ Γ1, and if G ∈ Γ1 \ Γ then

G̃K is linearly equivalent to F̃K ; so the above equality simplifies to

(32) B =
〈
{F̃K , ∆̃K} ∪

{
G̃K | G ∈ Γ

}
∪
{
ẼK
P | P ∈ K(B)

}〉
.

Let G ∈ Γ. As G is linearly equivalent to F , the total transform (cf. 4.8)

G
K

= G̃K +
∑

P∈K eP (G)E
K

P = G̃K +
∑

P∈KG E
K

P

of G is linearly equivalent to F
K

= F̃K , so we have

G̃K = F̃K −
∑

P∈KG E
K

P (equality in Cl(SK)).

In view of (32), this gives

(33) B =
〈
{F̃K , ∆̃K} ∪

{ ∑
P∈KG E

K

P | G ∈ Γ
}
∪
{
ẼK
P | P ∈ K(B)

}〉
.

Recall that the divisor class group Cl(S) is a free Z-module and that {F,∆} is a

basis of it; also, Cl(SK) is a free Z-module with basis {F̃K , ∆̃K} ∪
{
ẼK
P | P ∈ K

}
.

Any D ∈ Div(S) is linearly equivalent to aF +b∆ for some a, b ∈ Z. It follows that, for

any D ∈ Cl(S), the total transform D
K

belongs to the subgroup of Cl(SK) generated

by F
K

= F̃K and ∆
K

= ∆̃K , and so belongs to B. In particular, if κS ∈ Cl(S) is the

canonical class of S, then κKS ∈ B. As κSK = κKS +
∑

P∈K E
K

P (cf. 4.8), condition (31)

is equivalent to
∑

P∈K E
K

P ∈ B; as Cl(SK) =
〈
F̃K , ∆̃K

〉
⊕
〈{
ẼK
P | P ∈ K

}〉
, it follows

that (31) is equivalent to

(34)
∑

P∈K E
K

P ∈
〈{ ∑

P∈KG E
K

P | G ∈ Γ
}
∪
{
ẼK
P | P ∈ K(B)

}〉
,

where each E
K

P and each ẼK
P is to be interpreted as an element of Cl(SK).

Choose a total order � of K which extends the natural order and write K =
{P1, . . . , Pn} such that P1 ≺ · · · ≺ Pn. Note that (34) takes place in the sub-

group of Cl(SK) generated by {ẼK
P1
, . . . , ẼK

Pn
} (which is a free abelian group with basis

{ẼK
P1
, . . . , ẼK

Pn
}). Using coordinates with respect to the basis {ẼK

P1
, . . . , ẼK

Pn
}, we see

that statement (34) is equivalent to Q1K belonging to the subgroup of Zn generated
by all Q1KG such that G ∈ Γ and all 1{P} such that P ∈ K(B); and this is equivalent
to QK(B)1K being a linear combination (over Z) of the columns QK(B)1KG such that
G ∈ Γ. So we are done. �

Recall the meaning of S∗ from the introduction of section 4.

7.8. Notation. Given P ∈ S∗, let GP denote the unique element of L which passes
through the least element of the cluster KP =

{
x ∈ S∗ | x ≤ P

}
.

7.9. Definition. Each point P ∈ S∗ (where S = F0 as before) determines a tableau
T (P ) as follows. Let GP be as in 7.8. Then (S,KP , GP ) satisfies condition (∗) of 4.13,
so a tableau T (S,KP , GP ) is defined. We set T (P ) = T (S,KP , GP ), and we note that
T (P ) 6= 1. Note that T (P ) = TGP (P ) where TGP (P ) is defined in 5.4.
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7.10. Remark. Let P ∈ S∗. Then P is a proper point of S if and only if T (P ) =
(

1
1

)
.

More generally, the condition “T (P ) =
(

1
c

)
for some c ≥ 1” is equivalent to P ∈ KGP .

(These claims follow from 4.14(b)).

7.11. Proposition. Let (K,B) ∈ P. Then (K,B) ∈ P0 if and only if the following
conditions are satisfied:

(i) For each P ∈ K \K(B), T (P ) is an exact tableau;
(ii) for any P,Q ∈ K \K(B), if GP = GQ then δT (P ) = δT (Q);

(iii) G̃K ⊆ B, for all G ∈ L(K).

Proof. For any P ∈ S∗, define the integers a(P ), b(P ) by

a(P ) =
h∑
i=1

ĉi(ci + pi − 1) and b(P ) =
h∏
i=1

ci,

where the notation is defined by T (P ) = ( p1 ··· phc1 ··· ch ). Then a(P ) > 0, b(P ) > 0,
δT (P ) = a(P )/b(P ), and T (P ) is exact if and only if a(P )/b(P ) is an integer.

Let (K,B) ∈ P. Define a map q : K × K → N by stipulating that E
K

Q =∑
P∈K q(P,Q)ẼK

P for all choices of (P,Q) ∈ K ×K. Note that if q(P,Q) 6= 0 then Q

belongs to the cluster KP =
{
x ∈ S∗ | x ≤ P

}
. Choose a total order � extending the

natural order ≤, write the elements of K as P1 ≺ · · · ≺ Pn and consider Q = Q(K,�).
Let P ∈ K and G ∈ L. Then P = Pi for some i ∈ {1, . . . , n}, and the i-th row Qi

of Q(K,�) satisfies

(35) Qi1K = a(P ) and Qi1KG = b(P )δGGP , where δGGP =

{
1 if G = GP

0 else.

Indeed,

Qi1K =
∑
Q∈K

q(P,Q) =
∑
Q∈KP

q(P,Q) = Q∗(KP )1KP = a(P ),

the last equality by part (c) of 4.18, and

Qi1KG =
∑
Q∈KG

q(P,Q) =
∑

Q∈KP∩KG

q(P,Q).

If G 6= GP then KP ∩KG = ∅ and Qi1KG = 0. If G = GP then
∑

Q∈KP∩KG q(P,Q) =

Q∗(KP )1(KP )G = b(P ), again by part (c) of 4.18. Thus (35) is correct.

Suppose that (K,B) ∈ P0. Then, by 7.7, there exists a family
(
mG

)
G∈Γ

of integers
such that

(36) QK(B)1K =
∑
G∈Γ

mGQK(B)1KG .

Let P ∈ K \ K(B); then P = Pi for some i, and the row Qi is present in QK(B).
Considering that row in (36) and using (35) gives

a(P ) =
∑
G∈Γ

mGb(P )δGGP = b(P )
∑
G∈Γ

mGδ
G
GP
,
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so T (P ) is exact. As a(P ) 6= 0, it follows that
∑

G∈ΓmGδ
G
GP
6= 0, so GP ∈ Γ and

δT (P ) =
∑
G∈Γ

mGδ
G
GP

= mGP .

So (i) and (ii) hold, and moreover GP ∈ Γ (so G̃K
P ⊆ B) for each P ∈ K \K(B). This

last condition implies that (iii) holds. Indeed, consider G ∈ L(K). Then there exists
P ∈ K satisfying GP = G, and we may choose this P to be a maximal element of

K. Then (ẼK
P )2 = −1 in SK , so the fact that (K,B) ∈ P implies that ẼK

P * B, i.e.,

P ∈ K \K(B). Then G̃K = G̃K
P ⊆ B, so (iii) holds.

The converse is left to the reader. �

Let us reformulate 7.11 as follows:

7.12. Corollary. Consider a normal surface U which is connected at infinity and which
admits a dominant morphism U → A1 whose general fiber is an affine line. Then
there exists (K,B) ∈ P such that U ∼= U(K,B). Moreover, given any such (K,B), the
condition

U \ SingU has trivial canonical class

is satisfied if and only if the following conditions hold:

(i) For each P ∈ K \K(B), T (P ) is an exact tableau;
(ii) for any P,Q ∈ K \K(B), if GP = GQ then δT (P ) = δT (Q);

(iii) G̃K ⊆ B, for all G ∈ L(K).

Proof. Let f : U → A1 be the morphism given in the assumption, let V = f(U), and let
ρ : U → V be f regarded as a morphism from U to V . Then (U, ρ) ∈ C, so 6.7 implies
that there exists (K,B) ∈ P such that [U(K,B), ρ(K,B)] = [U, ρ]. Then U ∼= U(K,B).

Consider any (K,B) ∈ P such that U ∼= U(K,B). By 7.6, the condition “U \ SingU
has trivial canonical class” is equivalent to (K,B) ∈ P0, which is equivalent to (i–iii)
by 7.11. �

8. Pairs (K,B) satisfying U(K,B) ∈ D(k)

We continue to assume that varieties are over an algebraically closed field k of
characteristic zero. See the introduction for the definition of the class D(k) of surfaces.
The aim of this section is to prove result 8.4.

8.1. Lemma. Let (K,B) ∈ P and suppose that either (K,B) = (∅,∆ ∪ F ) or the
following conditions hold:

• L(K) is a singleton {G}
• K = KG

• B = F̃K ∪ ∆̃K ∪ G̃K ∪
(⋃

P∈K′ Ẽ
K
P

)
, where

K ′ =
{
x ∈ K | x is not a maximal element of K

}
.

Then U(K,B) ∈ D(k).
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One can give a direct proof of the above fact, but that is somewhat tedious. Instead,
we deduce the result from [4, 5.4.5]. Alternatively, if k = C then we could derive it
from [12, 4.10] and [14, 3.10].

Proof of 8.1. Let the notation be as in 6.5 and take U = U(K,B) to be the complement

of σ(B∞) in SK . If (K,B) = (∅,∆ ∪ F ) then U(K,B) = A2 by 7.1, so U(K,B) ∈ D(k).
Assume that (K,B) 6= (∅,∆ ∪ F ). Then the assumption on (K,B) implies that
condition (∗) of 7.4 is satisfied, so U(K,B) is affine and SK is projective (where SK is

defined in 6.5). Moreover, U(K,B) is the complement of σ(B∞) in SK , σ(B∞) is the

support of an SNC-divisor D of SK , each irreducible component of D is a rational curve
and the dual graph of D in SK is r0 r0 r−n for some n ≥ 2. Now Theorem 5.4.5 of
[4] implies in particular the following statement:

Let X be a normal projective rational surface and D an SNC-divisor of
X all of whose irreducible components are rational curves. Suppose that
X \ supp(D) is affine and that the dual graph of D in X is r0 r−1 r−n
where n ≥ 2. Then X \ supp(D) ∈ D(k).

Moreover, it is clear that this assertion remains true if, in its statement, we replace the
graph r0 r−1 r−n by r0 r0 r−n. So we obtain U(K,B) ∈ D(k). �

8.2. Lemma. Suppose that (K,B) ∈ P0 is such that L(K) is a singleton {G} and
KG 6⊆ K(B). Then K = KG.

Proof. Consider the set of tableaux Σ =
{
T (P ) | P ∈ K \K(B)

}
. Since KG 6⊆ K(B),

some T ∈ Σ satisfies δ(T ) = 1 (pick P0 ∈ KG \K(B); by 7.10, T (P0) =
(

1
c

)
for some c,

so 2.3 implies that δT (P0) = 1).
Note that GP = G for all P ∈ K. So, in view of 7.11, we have δ(T ) = δ(T ′) for all

T, T ′ ∈ Σ. By the first paragraph, δ(T ) = 1 for all T ∈ Σ.

Let P be a maximal element of K. Then (ẼK
P )2 = −1 in SK , so ẼK

P 6⊆ B (because
(K,B) ∈ P), so P ∈ K \ K(B) and consequently T (P ) ∈ Σ. By the preceding
paragraph, δT (P ) = 1; by 2.3(a), it follows that T (P ) =

(
1
c

)
for some c; then 7.10

implies that P ∈ KG. Hence, all maximal elements of K belong to KG. As KG is a
subcluster of K, it follows that K = KG. �

8.3. Lemma. Suppose that (K,B) ∈ P0 is such that K 6= ∅ and such that the dual

graph of B∞ is a linear chain. Then L(K) is a singleton {G}, the set
{
H ∈ L | H̃K ⊆

B
}

is equal to {F,G}, and K = KG.

Proof. As in 6.4, let F1, . . . , Fn, C1, . . . , Ct denote the distinct elements of
{
H ∈ L |

H̃K ⊆ B
}

, where Fi ∩minK = ∅ and Ci ∩minK 6= ∅. Then ∆̃K has n+ t neighbors
in the dual graph (21) of B∞; consequently, n + t ≤ 2. We have L(K) = {C1, . . . , Ct}
by 7.11, so t ≥ 1, because K 6= ∅. We have n ≥ 1, because F ∈ {F1, . . . , Fn}.
Consequently, n = 1 = t. We change the notation and write L(K) = {G}; then{
H ∈ L | H̃K ⊆ B

}
= {F,G}.
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There remains to show that K = KG. In view of 8.2, we may assume throughout:

(37) KG ⊆ K(B).

We show that (37) leads to a contradiction, and this will complete the proof. First
note that KG 6= ∅ (because G ∈ L(K)) and consequently KG has a maximal element.

Let P be any maximal element of KG; then P ∈ K(B) by (37), so ẼK
P is an irreducible

component of B; moreover, ẼK
P ∩ G̃K 6= ∅ because P is a maximal element of KG.

As G̃K is not a branch point of the dual graph of B∞, it follows that KG has only
one (hence exactly one) maximal element. As KG is a cluster, it must then be totally
ordered by the natural order. In particular, KG has a unique minimal element, so K
has a unique minimal element; let P1 ∈ K be that element.

Note that for each P ∈ K, the tableaux TG(P ) (cf. 5.4) and T (P ) (cf. 7.9) are in
fact equal: TG(P ) = T (S,KP , G) = T (P ) where KP =

{
x ∈ K | x ≤ P

}
. We claim:

(38) There exists P ∈ K \K(B) such that the tableau T (P ) is one of the following:

(a) T (P ) =
(
p
c

)
for some p, c such that 1 ≤ p < c

(b) T (P ) =
(
p 1
c N

)
for some p, c,N such that N ≥ 1, 1 ≤ p < c.

We prove this by applying result 5.5 to (K,G, P1, Z), where we define Z ⊂ SK to be

the union of the ẼK
Q for all Q ∈ K satisfying ẼK

Q ⊂ B∞. As B∞ cannot contain a

(−1)-curve (cf. 6.3), Z is a proper subset of π−1
K (P1); so condition 5.5(i) is satisfied. As

B∞ = F̃K ∪ ∆̃K ∪ G̃K ∪ Z is a linear chain, G̃K ∪ Z too is a linear chain and hence

condition 5.5(ii) holds. Condition (37) implies that ẼK
P1
⊂ B, so 5.5(iii) holds. If P1 is

a maximal element of KG then KG = {P1}, so (G̃K)2 = −1 in SK , which contradicts
(K,B) ∈ P; so 5.5(iv) holds. The fact that (K,B) ∈ P also implies that 5.5(v) holds,
so (K,G, P1, Z) satisfies all hypotheses of 5.5. By that result, there exists P ∈ K such

that T (P ) is as described in (38), and such that ẼK
P ∩(G̃K∪Z) 6= ∅ and ẼK

P * G̃K∪Z.

This last condition implies that ẼK
P * B, so P ∈ K \K(B). This proves (38).

Observe that if T (P ) is as in part (a) of (38) then p 6= 1 (if p = 1 then P ∈ KG, so
(37) implies that P ∈ K(B), a contradiction). Then it follows from 2.3 that, for any
P satisfying (38), T (P ) is not an exact tableau. Consequently,

(39) There exists P ∈ K \K(B) such that T (P ) is not an exact tableau.

This contradicts 7.11 and hence completes the proof that (37) is impossible. The proof
of the Proposition is complete. �

Refer to 3.5, 4.9 and 6.2 for the notations G∞[U ], KG and L(K).

8.4. Proposition. Let (K,B) ∈ P and let U = U(K,B). Suppose that

(a) U is affine;
(b) some element of G∞[U ] is a linear chain of the form . . .r0 rx rω1 rωq where

q ≥ 0, x is any integer and ω1, . . . , ωq ∈ Z are such that ωi ≤ −2 for all i;
(c) U \ Sing(U) has trivial canonical class.

Then U ∈ D(k).
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Proof. Let (K,B) ∈ P, let U = U(K,B), and suppose that (a), (b) and (c) are satisfied.
If K = ∅ then, by 7.1, U ∼= V × A1 where V is P1 minus q points, q ≥ 1. So the
weighted graph (28) belongs to G∞[U ]; by assumption (b), it follows that q = 1, so
U ∼= A2 and hence U ∈ D(k). So we are done in this case.

From now-on, assume that K 6= ∅. In view of 8.1, it suffices to show that the
following conditions hold:

(d) L(K) is a singleton {G}
(e) K = KG

(f) B = F̃K ∪ ∆̃K ∪ G̃K ∪
(⋃

P∈K′ Ẽ
K
P

)
, where

K ′ =
{
x ∈ K | x is not a maximal element of K

}
.

As SK \B ∼= U \ SingU by 6.6, SK \B has trivial canonical class; thus (K,B) ∈ P0.
It follows from assumption (b) that every minimal element of G∞[U ] is a linear chain;
hence G(SK , B∞) is a linear chain by 6.6, so all hypotheses of 8.3 are satisfied. That

result implies that (d) and (e) hold, and that
{
H ∈ L | H̃K ⊆ B

}
= {F,G}; so, to

complete the proof, it only remains to show that K \K(B) is equal to the set maxK
of maximal elements of K. We have

(40)
{
P ∈ K | ẼK

P ∩G̃K 6= ∅
}

= maxK ⊆ K\K(B) ⊆
{
P ∈ K | ẼK

P ∩B∞ 6= ∅
}
,

where the equality follows from K = KG, the first inclusion from (K,B) ∈ P, and the
second inclusion from condition (∗) of 7.4 (which must hold, since U is affine). The

fact that
{
P ∈ K | ẼK

P ∩ G̃K 6= ∅
}
⊆ K \K(B) implies that B∞ = F̃K ∪ ∆̃K ∪ G̃K ,

so in fact we have
{
P ∈ K | ẼK

P ∩ G̃K 6= ∅
}

=
{
P ∈ K | ẼK

P ∩ B∞ 6= ∅
}

, so all
inclusions in (40) are in fact equalities. In particular we have maxK = K \K(B). So
(f) holds, and the proof is complete. �

9. Surfaces with trivial Makar-Limanov invariant

Let us begin by making a list of the facts that we need for proving the main results.

9.1. Definition. Let R be an integral domain and an algebra over a field k. We say
that R is a complete intersection over k if it is isomorphic to a quotient

k[X1, . . . , Xn]/(f1, . . . , fp)

for some n, p ∈ N, where (f1, . . . , fp) is a prime ideal of k[X1, . . . , Xn] of height p. If R
is a complete intersection over k, we also call SpecR a complete intersection over k.

9.2. Lemma. Let X be an affine variety over an algebraically closed field k. If X is a
complete intersection over k, then X \ Sing(X) has trivial canonical class.

Proof. Apparently, this is a well-known fact. Being unable to find an appropriate
reference, we give some indications of how to prove it.

Let p, q ∈ N and f1, . . . , fp ∈ k[X1, . . . , Xp+q] some polynomials. Consider the
k-algebra A = k[X1, . . . , Xp+q]/(f1, . . . , fp), the ideal J of A generated by the p ×
p minors of the jacobian matrix (∂fj/∂Xi), and the open subset U = X \ V (J) of
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X = SpecA. Consider the sheaf of OX-modules (Ωq
A/k)˜ associated to the A-module

Ωq
A/k =

∧q ΩA/k, where ΩA/k is the sheaf of differentials of A over k. Then we leave it

as an exercise to show that there exists an A-linear map ϕ : Ωq
A/k → A with image J

and such that, for each p ∈ U , the localized map ϕp : (Ωq
A/k)p → Ap is bijective. This

means that ϕ̃ : (Ωq
A/k)˜ → OX restricts to an isomorphism (Ωq

A/k)˜∣∣
U
∼= OX |U . Note

that, in this generality, it may happen that U = ∅. However, if we now assume that
(f1, . . . , fp) is a prime ideal of height p, then V (J) = Sing(X) and (Ωq

A/k)˜∣∣
U

is the

canonical sheaf of U = X \ Sing(X), so X \ Sing(X) has trivial canonical sheaf. �

9.3. Lemma. Let R be an integral domain and a complete intersection over a field k.
If R is regular in codimension one, then R is normal.

Proof. Since R is a complete intersection, it is Cohen-Macaulay and hence satisfies
Serre’s condition (S2). As R is a noetherian domain which is regular in codimension
one and satisfies (S2), it is normal. (Prop. 18.13 of [11] and Theorem 39 of [16].) �

9.4. (Cor. 4.11 of [15]) Let R be a two-dimensional12 integral domain and a finitely
generated algebra over a field k of characteristic zero. If ML(R) = k then R is regular
in codimension one.

9.5. (Lemma 3.7 of [7]) Let R be an integral domain containing a field k of characteristic
zero. If R is normal and ML(R) = k, then for any field extension K of k we have:

K ⊗k R is an integral domain and ML(K ⊗k R) = K.

9.6. (Theorem 2.3 of [7]) For an algebra R over a field k of characteristic zero, the
following conditions are equivalent:

(a) R ∈ D(k)
(b) ML(R) 6= R and there exists a field extension K/k such that K ⊗k R ∈ D(K).

9.7 (Theorem 2.20 of [10]). Let U be a normal affine surface over an algebraically closed
field k of characteristic zero. Then ML(U) = k if and only if the following conditions
are satisfied:

• U is rational and completable by rational curves
• some element of G∞[U ] is a linear chain of the form . . .r0 rx rω1 rωq where
q ≥ 0, x is any integer and ω1, . . . , ωq ∈ Z are such that ωi ≤ −2 for all i.

Theorems 9.8 and 9.9 may be regarded as the main results of this paper. The proof
of 9.8 makes use of the framework developed in sections 6–8, but note that 6.7 and 8.4
are the only results from earlier sections which are used here. The reader should also
keep in mind that, in 9.8 (resp. in 9.9), we view D(k) as a class of surfaces (resp. of
algebras). See the introduction for the definition of D(k).

9.8. Theorem. Let U be an affine surface over an algebraically closed field k of char-
acteristic zero. Then the following are equivalent.

12We mean Krull dimension.
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(a) U ∈ D(k);
(b) ML(U) = k and U is a complete intersection over k;
(c) ML(U) = k, U is normal and U \ SingU has trivial canonical class.

Proof. It is well known that if U ∈ D(k) then ML(U) = k; as U is also a hypersurface
of A3, it is a complete intersection; so (a) implies (b).

Suppose that U satisfies (b). By 9.4, U is regular in codimension 1; so 9.3 implies
that U is normal. By 9.2, U \ SingU has trivial canonical class. So (b) implies (c).

Finally, suppose that U satisfies (c). As U is a normal affine surface such that
ML(U) = k, it is well known that there exists a surjective morphism ρ : U → A1 whose
general fiber is an affine line (see for instance 2.3 of [10]). Then (U, ρ) ∈ C and, by 6.7,
there exists (K,B) ∈ P such that [U(K,B), ρ(K,B)] = [U, ρ]; then U(K,B)

∼= U . Result 9.7
implies that U satisfies hypothesis (b) of 8.4, so U satisfies all hypotheses (a–c) of 8.4;
so U ∈ D(k) by 8.4. �

9.9. Theorem. Let R be a two-dimensional integral domain which contains a field k
of characteristic zero. The following conditions are equivalent.

(a) R ∈ D(k)
(b) ML(R) = k and R is 3-generated as a k-algebra
(c) ML(R) = k and R is a complete intersection over k.

Proof. The implications (a) ⇒ (b) ⇒ (c) are well known and easy to see. We prove
that (c) implies (a). Suppose that R satisfies (c) and let K be the algebraic closure of
k. By 9.4, R is nonsingular in codimension 1; so 9.3 implies that R is normal. In view
of 9.5, we obtain:

(c′) K ⊗k R is a two-dimensional integral domain, ML(K ⊗k R) = K and K ⊗k R
is a complete intersection over K.

Then U = Spec(K ⊗k R) satisfies condition (b) of 9.8. By that result, we obtain
U ∈ D(K), or equivalently

K ⊗k R ∈ D(K).

Since ML(R) = k 6= R by assumption, 9.6 implies that R ∈ D(k). �
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