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Abstract. This article is a survey of two subjects: the first part is devoted to

field generators in two variables, and the second to birational endomorphisms of the

affine plane. Each one of these subjects originated in Abhyankar’s seminar in Purdue

University in the 1970s. Note that the part on field generators is more than a survey,

since it contains a considerable amount of new material.

This article is a survey of two subjects: the first part of the paper is devoted to
field generators in two variables, and the second to birational endomorphisms of the
affine plane. Each one of these subjects originated in Abhyankar’s seminar in Purdue
University in the 1970s. The authors of the present article were introduced to these
questions by Peter Russell, who participated in Abhyankar’s seminar and who made
early contributions to both problems.

As explained in Section 1, the two subjects are entangled one into the other. It is
therefore natural to present them together in a survey. Note that Part I is more than
a survey, since it contains a considerable amount of new material (see Section 1); and
that Part II is less than a survey, since it restricts itself to certain particular aspects
of the subject under consideration (see Section 6).

Conventions

The symbol “⊂” means strict inclusion of sets, “\” means set difference, and 0 ∈ N.

If R is a subring of a ring S, the notation S = R[n] means that S is R-isomorphic
to a polynomial algebra in n variables over R. If L/K is a field extension, L = K(n)

means that L is a purely transcendental extension of K, of transcendence degree n.
We write FracR for the field of fractions of a domain R.

If k is a field and A = k[2] (i.e., A is a polynomial ring in two variables over k) then
a coordinate system of A is an ordered pair (X, Y ) ∈ A × A satisfying A = k[X, Y ].
We define C(A) to be the set of coordinate systems of A. A variable of A is an element
X ∈ A satisfying A = k[X, Y ] for some Y .
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Consider F ∈ A = k[2]. For each γ = (X, Y ) ∈ C(A), we write degγ(F ) for the total
degree of F as a polynomial in X, Y (let us agree that degγ(0) = −∞). We set

degA(F ) = min
{

degγ(F ) | γ ∈ C(A)
}
.

Given a field k, we write A2 = A2
k for the affine plane over k, i.e., A2 = SpecA for

some A = k[2]. By a coordinate system of A2, we mean a coordinate system of A. That
is, a coordinate system of A2 is an (X, Y ) ∈ A× A satisfying A = k[X, Y ]. The set of
coordinate systems of A2 is denoted C(A2) or simply C; so C = C(A2) = C(A).

By “curve” we mean “irreducible and reduced curve”.

Part I: Field generators

Throughout Part I, the following convention about the base field k is in effect:

• In all examples, k is tacitly assumed to be an algebraically closed field of char-
acteristic zero.
• Everywhere else, k denotes an arbitrary field unless the contrary is explicitly

specified.

1. Introduction

1.1. Definition. Let A = k[2] and K = FracA. A field generator of A is an F ∈ A
satisfying K = k(F,G) for some G ∈ K. A good field generator of A is an F ∈ A
satisfying K = k(F,G) for some G ∈ A. A field generator which is not good is said to
be bad.

The notions of good and bad field generators are classical. The two fundamental
articles on this subject were written by Russell in 1975 and 1977 (cf. [Rus75] and
[Rus77]). The main results of those two papers will be explained in the course of
the present article. Bad field generators were once supposed not to exist, then two
examples were given, the first one by Jan [Jan74] (unpublished) in 1974, of degree
25, and the second one by Russell [Rus77] in 1977 of degree 21. There were no more
examples until 2005, when the first author showed [CN05] that for any N there exists
a bad field generator F of A = k[2] such that degA(F ) ≥ N .

It is an open question to classify field generators.

Throughout Part I we shall use the convention that the notation “A � B” means
that all of the following conditions are satisfied:

A = k[2], B = k[2], A ⊆ B and FracA = FracB.

Observe that if F ∈ A � B, then F is a field generator of A iff it is a field gen-
erator of B. So the problem of classifying field generators is intertwined with that of
describing all pairs A � B, or equivalently, with the problem of classifying birational
endomorphisms of A2. The latter problem is the subject of Part II of the present paper,
and is a hard and interesting problem in its own right. It therefore seems reasonable to
keep those two problems separated, i.e., if our aim is to classify field generators, then
we should primarily try to classify those field generators that are not composed with
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a birational endomorphism. A polynomial F ∈ A = k[2] that is not composed with a
birational endomorphism is said to be “lean”:

1.2. Definition. Let F ∈ A = k[2]. We say that F is lean in A if, for each A′ such
that F ∈ A′ � A, there holds A′ = A. We say that F ∈ A admits a lean factorization
if there exists A′ � A such that F ∈ A′ and F is lean in A′.

The problem of classifying field generators contains the following subproblems:

(i) Determine which field generators do not admit a lean factorization, and classify
them.

(ii) Classify the field generators that are lean.

By composing the polynomials (ii) with all birational endomorphisms of A2 one obtains
precisely all field generators that admit a lean factorization; then adding the polynomi-
als (i) to this set gives all field generators. We regard (i) and (ii) as the most interesting
components of the problem of classifying field generators. There is, however, another
aspect that is of crucial importance:

(iii) Describe how field generators behave under birational extensions A � B.

In some sense, (iii) is a theme that underlies the whole paper. Results 2.13, 2.14, 5.3,
5.7 and 5.9 are good illustrations of the type of theory that (iii) calls for.

Before discussing (i) and (ii), we need to define the notions of very good and very
bad field generators. We already noted that if F ∈ A � B, then F is a field generator
of A iff it is a field generator of B. Moreover, if F is a good field generator of A then
it is a good field generator of B (and consequently, if it is a bad field generator of B
then it is a bad field generator of A). However, it might happen that F be a bad field
generator of A and a good field generator of B. These remarks suggest the following:

1.3. Definition. Let F ∈ A = k[2] be a field generator of A.

(1) F is a very good field generator of A if it is a good field generator of each A′

satisfying F ∈ A′ � A.
(2) F is a very bad field generator of A if it is a bad field generator of each A′

satisfying A′ � A.

Problem (i) is partially solved by 5.4, which asserts that the field generators that
do not admit lean factorizations are precisely the very good field generators. This is in
fact the reason why we became interested in the concept of very good field generator.
The very good field generators are not yet classified, but Sections 4 and 5 give several
results about them (4.1, 5.11 and various examples and remarks).

Problem (ii) is probably the hardest part of the whole question. Although Section 5
gives some results on this subject, our understanding is still very incomplete.

Most of the results given in Sections 2–4 can be found in the article [CND14a].
However, most of the examples never appeared in the literature before. All the material
of Section 5 is new. Note in particular that 5.14 gives an example of a very bad field
generator that is also lean, and that no such example was known before.

1.4. Remark. If k is an algebraically closed field of characteristic zero then F is a field
generator of A = k[2] if and only if it is a “rational polynomial” of A. (By a rational
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polynomial of A, we mean an element F ∈ A \ k such that, for all but possibly finitely
many λ ∈ k, F − λ is irreducible and the plane curve “F − λ = 0” is rational.) For
this equivalence and analoguous results in positive characteristic, see [Dai14].

2. Dicriticals

2.1. Definition. Given a field extension L ⊆ M , let V(M/L) be the set of valuation
rings R satisfying L ⊆ R ⊆M , FracR = M and R 6= M .

Given a pair (F,A) such that A = k[2] and F ∈ A \ k, define

V∞(F,A) =
{
R ∈ V(K/k(F )) | A * R

}
where K = FracA.

Then V∞(F,A) is a nonempty finite set which depends only on the pair (k(F ), A). For
each R ∈ V∞(F,A), let mR be the maximal ideal of R. Let R1, . . . , Rt be the distinct
elements of V∞(F,A) and di = [Ri/mRi : k(F )] for i = 1, . . . , t. Then we define

∆(F,A) = [d1, . . . , dt] and dic(F,A) = |V∞(F,A)| = t

where [d1, . . . , dt] is an unordered t-tuple of positive integers.
Given A = k[2] and F ∈ A \ k, we call the elements of V∞(F,A) the dicriticals of

(F,A), or of F in A; given R ∈ V∞(F,A), we call [R/mR : k(F )] the degree of the
dicritical R.

Except for the notations, our definitions of “dicritical” and of “degree of dicritical”
are identical to those given by Abhyankar in [Abh10] (see the last sentence of page 92).
The following fact is very useful for determining the degree list ∆(F,A) of an explicit
polynomial:

2.2. Lemma. Assume that k is algebraically closed, let A = k[2] and F ∈ A \ k. Let
f : A2 = SpecA → A1 = Spec k[F ] be the morphism determined by the inclusion
k[F ]→ A. Then there exists a (non unique) commutative diagram

(1)
A2

f
��

� � // X

f̄
��

A1 � � // P1

where X is a nonsingular projective surface, the arrows “↪→” are open immersions and
f̄ is a morphism. Among the irreducible components of X \ A2, let C1, . . . , Ct ⊂ X be
the curves that satisfy f̄(Ci) = P1, and for each i = 1, . . . , t, let di be the degree of the
surjective morphism f̄ |Ci : Ci → P1. Then ∆(F,A) = [d1, . . . , dt].

Proof. We sketch the proof, and refer to [CND14a, 2.3] for details. For each i = 1, . . . , t,
let ξi ∈ X be the generic point of Ci. Then the local rings OX,ξi are valuation rings,
V∞(F,A) =

{
OX,ξi | 1 ≤ i ≤ t

}
and, for each i, the degree of f̄ |Ci : Ci → P1 is equal

to [K(Ci) : K(P1)] = [OX,ξi/mX,ξi : k(F )]. �

We shall make tacit use of 2.2 in all examples of the present paper. In practice,
we find a diagram (1) by resolving the base points of the linear system Λ(F ) on P2
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defined as Λ(F ) =
{
V (aF ∗(X, Y, Z) + bZn) | (a : b) ∈ P1

}
, where n = degF and

F ∗(X, Y, Z) = ZnF (X/Z, Y/Z) is the standard homogenization of F .
The following fact appears as “GCD(deg q̄1, . . . deg q̄r) = 1” in the proof of [Rus75,

3.8], and is also a special case of [CND14a, 2.5]:

2.3. Corollary. If F is a field generator of A = k[2] and ∆(F,A) = [d1, . . . , dt], then
gcd(d1, . . . , dt) = 1.

2.4. Lemma. Let A = k[2], F ∈ A \ k and ∆(F,A) = [d1, . . . , dt]. Then

degA(F ) ≥
t∑
i=1

di.

Proof. Let γ = (X, Y ) ∈ C(A); let us prove that

(2) degγ(F ) ≥
∑t

i=1 di.

We first consider the case where k is an infinite field. For each λ ∈ k∗, let Xλ =
X − λY ∈ k[X, Y ] = A. Since A = k[Xλ, Y ], there exists a unique Gλ(S, T ) ∈ k[S, T ]
such that F = Gλ(Xλ, Y ). Moreover,

(3) degT (Gλ(S, T )) ≤ degγ(F ).

Consider the field M = k(F,Xλ). Since FracA = M(Y ) and Y is a root of the
polynomial Gλ(Xλ, T )− F ∈M [T ], (3) implies that

[FracA : k(F,Xλ)] ≤ degγ(F ), for every λ ∈ k∗.

Let V∞(F,A) = {R1, . . . , Rt}. For each i = 1, . . . , t, let di = [Ri/mRi : k(F )] and
let vi : (FracA)∗ → Z be the valuation such that Ri = Rvi ; note that at most one
element λi ∈ k∗ satisfies vi((X/Y )−λi) > 0. Since k is infinite, we may choose λ ∈ k∗

satisfying
vi((X/Y )− λ) ≤ 0 for all i = 1, . . . , t.

We claim:

(4) vi(Xλ) < 0 for all i = 1, . . . , t.

Indeed, let i ∈ {1, . . . , t} and observe that min(vi(X), vi(Y )) < 0. If vi(X) 6= vi(Y )
then vi(Xλ) = min(vi(X), vi(Y )) < 0. If vi(X) = vi(Y ) then vi(Y ) < 0 and vi(Xλ) =
vi(Y ) + vi((X/Y )− λ) ≤ vi(Y ) < 0. This proves (4).

SinceXλ ∈ A, v(Xλ) ≥ 0 for all valuations v of FracA over k(F ) other than v1, . . . , vt.
This and (4) implies that the divisor of poles of Xλ is div∞(Xλ) =

∑t
i=1miRi where

mi = −vi(Xλ) > 0 for all i. Consequently,∑t
i=1 di ≤

∑t
i=1 midi = deg

(
div∞(Xλ)

)
= [FracA : k(F,Xλ)] ≤ degγ(F ),

so (2) is true whenever k is an infinite field.
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Now drop the assumption on k (so k is now an arbitrary field). Pick an indeterminate

τ transcendental over FracA, let k̂ = k(τ) = k(1) and Â = k̂[X, Y ] = k̂[2]. Since

F ∈ A ⊂ Â, we may consider V∞(F,A) and V∞(F, Â). It is easy to see that

(5) S 7→ S ∩ FracA is a surjective map V∞(F, Â)→ V∞(F,A).

Let us adopt the temporary notation ∆](F,A) =
∑t

i=1 di where ∆(F,A) = [d1, . . . , dt].
It’s enough to show:

(6) ∆](F, Â) ≥ ∆](F,A).

Indeed, we have degγ(F ) ≥ ∆](F, Â) by the first part of the proof and the fact that k̂ is

an infinite field, so if (6) is true then we are done. To prove (6), consider S ∈ V∞(F, Â),
let R = S ∩ FracA and consider the field extensions:

S/mS

k̂(F )

llllll
R/mR

SSSSSS

k(F )

RRRRRR
kkkkkk

Since R/mR is algebraic over k(F ) and k̂(F ) is purely transcendental over k(F ), R/mR

is linearly disjoint from k̂(F ) over k(F ); thus [S/mS : k̂(F )] ≥ [R/mR : k(F )]. As this

holds for each S ∈ V∞(F, Â), (5) implies∑
S∈V∞(F,Â)

[S/mS : k̂(F )] ≥
∑

R∈V∞(F,A)

[R/mR : k(F )],

which is exactly (6). �

2.5. Observation ([Rus75, Rem. after 1.3]). Let F be a field generator of A = k[2].
Then F is a good field generator of A if and only if “1” occurs in the list ∆(F,A).

Remark. Recall that in all examples of Part I, k is assumed to be an algebraically closed
field of characteristic zero (see the introduction to Part I). The terms “Newton polygon”
and “Newton tree” are sometimes used in the examples below. The Newton polygon of
a polynomial

∑
ij aijX

iY j is the convex hull in R2 of {0}∪
{

(i, j) | aij 6= 0
}

; the sides
of that polygon that are not included in the axes of coordinates are called the “faces”
of the Newton polygon. See [CN11] for the notion of Newton tree. From the Newton
tree at infinity of F (X, Y ), one can deduce the genus of the curve “F (X, Y ) = t” for
general t ∈ k; however, readers not familiar with these notions may ignore Newton
trees altogether, and use the well known genus formula (more is said about this in 2.6).

2.6. Example. The first example of bad field generator was given by Jan (A. Sathaye
kindly gave us the equation of that polynomial). Let A = k[X, Y ] = k[2] and

FJ(X, Y ) = Y (X8Y 4 − 1)2 + 3X3Y 2(X8Y 4 − 1) + 3X6Y 3 +X ∈ A.
It has two points at infinity. The Newton polygon has two faces, one linking the point
(1, 0) to the point (16, 9) with slope 3/5 and the other one linking the point (0, 1) to
(16, 9) with slope 1/2.
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Let FJ(X, Y, Z) ∈ k[X, Y, Z] denote the standard homogenization of FJ . At the
point [0 : 1 : 0], we have

FJ(X, 1, Z) + tZ25 = (X8 − Z12)2 + 3X3(X8 − Z12)Z8 + 3X6Z16 +XZ24 + tZ25.

After the blowups: X → XZ and divide by Z16, Z → ZX and divide by X8, and
X → XZ and divide by Z8, the strict transform of FJ(X, 1, Z) + tZ25 is

(X4 − 1)2 + 3X2(X4 − 1)Z + 3X4Z2 +X2Z3 + tXZ2.

In view of 2.2, this shows that we have four dicriticals of degree 2, corresponding to
the roots of X4 − 1 (these four dicriticals are over the point [0 : 1 : 0]). At the point
[1 : 0 : 0], we have

FJ(1, Y, Z) + tZ25 = Y (Y 4 − Z12)2 + 3Y 2(Y 4 − Z12)Z8 + 3Y 3Z16 + Z24 + tZ25

After the blowups: Y → Y Z2 and divide by Z18, Z → ZY and divide by Y 6, and
Y → Y Z2 and divide by Z6, we get

Y 3(1− Z4)2 + 3Y 2(1− Z4) + 3Y + 1 + tY Z3.

After the change Y → Y − 1 we have Y 3 +h(t)Z3 +
∑
aα1,α2Y

α1Zα2 with α1 +α2 > 3,
and h(t) is a polynomial in t of degree 1. This proves that (over the point [1 : 0 : 0])
we have one dicritical of degree 3. Then

∆(FJ ,k[X, Y ]) = [2, 2, 2, 2, 3].

From the above computations one deduces the configuration of singularities at infinity,
from which one obtains the Newton tree at infinity of FJ shown in Figure 1. From that
Newton tree—or directly from the configuration of singularities at infinity and the genus
formula—it follows that (for general t ∈ k) the plane curve “FJ(X, Y ) = −t” is rational.
So FJ is a rational polynomial and hence (1.4) a field generator of A = k[X, Y ]. By
2.5, FJ is a bad field generator of A.

−3

−1

2

(0) (0)

−5

3

−16

−3

−3

−3

Figure 1



8 PIERRETTE CASSOU-NOGUÈS AND DANIEL DAIGLE

The second example of bad field generator was given by Russell in [Rus77], and is
the following polynomial of degree 21:1

(Y 2(XY + 1)4 + Y (2XY + 1)(XY + 1) + 1)(Y (XY + 1)5 + 2XY (XY + 1)2 +X) .

We shall refer to this polynomial as “Russell’s polynomial”. It is a bad field generator
of k[X, Y ], where k is an arbitrary field. The same paper contains the following fact,
valid for an arbitrary field k (we use the notation Z≤25 =

{
x ∈ Z | x ≤ 25

}
):

2.7. Let A = k[2], then{
degA(F ) | F is a bad field generator of A

}
∩ Z≤25 = {21, 25}.

2.8. Example. We give an infinite family of bad field generators of degree 21. Given
(a0, a1, a2) ∈ k3, let ϕ(T ) = T 3 +a2T

2 +a1T +a0 ∈ k[T ] = k[1], and define FR(X, Y ) ∈
A = k[X, Y ] by

(7) FR(X, Y ) = X3ϕ(XY )3 +X2ϕ(XY )2(4XY + a2 + 2)

+Xϕ(XY )(6X2Y 2 + (4 + 3a2)XY + 1 + a1 + a2)

+ 4X3Y 3 + (2 + 3a2)X2Y 2 + (a2 + 2a1)XY + Y.

Let us sketch the proof of:

(8) FR is a bad field generator of A of degree 21 and ∆(FR, A) = [2, 3, . . . , 3], where
the number of occurrences of “ 3” is equal to the number of distinct roots of ϕ.

For t ∈ k, consider the standard homogenization FR(X, Y, Z) − tZ21 of FR(X, Y ) − t
and the corresponding local equations FR(X, 1, Z)− tZ21 and FR(1, Y, Z)− tZ21 at the
points [0 : 1 : 0] and [1 : 0 : 0] respectively.

At the point [0 : 1 : 0], after the blowups X → XZ dividing by Z12, Z → XZ
dividing by X8, X → XZ2 dividing by Z8, changing X → X − 1, blowup Z → XZ
dividing by X2, again X → XZ dividing by Z2, changing X → X + 1, we get a
dicritical of degree 2.

At the point [1 : 0 : 0], we apply Y → Y Z2 dividing by Z18 and we get k dicriticals
of degree 3 where k ∈ {1, 2, 3} is the number of distinct roots of ϕ.

So ∆(FR, A) = [2, 3, . . . , 3] where “3” occurs k times. The genus formula shows that
FR is a rational polynomial and hence a field generator of A = k[X, Y ]; by 2.5, FR is
a bad field generator of A, proving (8).

Let us declare that F,G ∈ A are equivalent if there exists θ ∈ Autk(A) such that
θ
(
k[G]

)
= k[F ]. We shall now prove:2

(9) The family {FR} contains almost all bad field generators of degree 21 up to
equivalence, and the members of {FR} are pairwise nonequivalent.

Let V be the set of bad field generators F of A = k[X, Y ] of degree 21 satisfying:

1There were some misprints in the polynomial given in [Rus77]. The polynomial that is displayed

here is the correct one.
2The meaning of “almost all” is made precise in (10).
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(i) the support of F with respect to (X, Y ) is included in 〈(0, 0), (9, 0), (0, 12), (9, 12)〉;
(ii) if we write F =

∑
i,j ai,jX

iY j (ai,j ∈ k) then

a9,12 = 1 and a9,0 = a0,12 = a0,0 = 0.

See 3.1 for “support” and “〈. . . 〉”. The set of all polynomials satisfying (i) can be
identified with A130, so we may view V as a subset of A130. The appendix of [Rus77]
proves, among other things, that (a) every bad field generator of A of degree 21 is
equivalent to an element of V ; and (b) V is a locally closed subset of A130, and is an
irreducible algebraic variety of dimension 5 (isomorphic to the V1 given there). We
shall prove:

(10) There exists a dense Zariski-open subset U of V such that each element of U
is equivalent to a member of {FR}.

We begin by enlarging the family {FR}. Let W = (k∗)2 × k3 ⊂ A5 and, for each
(b, a, a0, a1, a2) ∈ W , define F (b, a, a0, a1, a2;X, Y ) ∈ k[X, Y ] by

F (b, a, a0, a1, a2;X, Y ) = X3ϕ(XY )3b4 +X2ϕ(XY )2(4b3XY + a2b
3 + 2ab2)

+Xϕ(XY )(6X2Y 2b2 + (4ab+ 3a2b
2)XY + a2 + a1b

2 + aa2b)

+ 4X3Y 3b+ (2a+ 3a2b)X
2Y 2 + (aa2 + 2a1b)XY + Y.

Note that F (1, 1, a0, a1, a2;X, Y ) is the right-hand-side of Equation (7) and hence is a
member of the family {FR}. One can check that, for every (b, a, a0, a1, a2) ∈ W , t ∈ k∗

and (r, s, u) ∈ Z3 satisfying 3s− 2r + u = 0, one has

t−rF (b, a, a0, a1, a2;X, Y ) = F (btu, atu+s−r, a0t
3(s−r), a1t

2(s−r), a2t
s−r; tsX, t−rY )

and hence

F (b, a, a0, a1, a2;X, Y ) ∼ F (btu, atu+s−r, a0t
3(s−r), a1t

2(s−r), a2t
s−r;X, Y ).

Taking (r, s, u) = (1, 1,−1) and t = b gives

F (b, a, a0, a1, a2;X, Y ) ∼ F (1, a/b, a0, a1, a2;X, Y );

then taking (r, s, u) = (3, 2, 0) and t = a/b gives

F (1, a/b, a0, a1, a2;X, Y ) ∼ F (1, 1, a0(a
b
)−3, a1(a

b
)−2, a2(a

b
)−1;X, Y ).

So, for every (b, a, a0, a1, a2) ∈ W , F (b, a, a0, a1, a2;X, Y ) is equivalent to a member of{
FR
}

. In particular, F (b, a, a0, a1, a2;X, Y ) is a bad field generator. It follows that if we
defineG(b, a, a0, a1, a2;X, Y ) = b−4F (b, a, a0, a1, a2;Y,X), thenG(b, a, a0, a1, a2;X, Y ) ∈
V . So we have the morphism of varieties

ψ : W → V, (b, a, a0, a1, a2) 7→ G(b, a, a0, a1, a2;X, Y )
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and each element of the image of ψ is equivalent to a member of
{
FR
}

. Direct calcu-
lation shows that G(b, a, a0, a1, a2;X, Y ) =

∑
ij cijX

iY j satisfies

c7,9 = 4/b,

c2,2 = (2a+ 3a2b)/b
4, c4,5 = (4a+ 9a2b)/b

3,

c1,1 = (2a1b+ aa2)/b4, c0,1 = a0(a2 + aa2b+ a1b
2)/b4.

These equations show that if Q =
∑

ij cijX
iY j is an element of V such that c0,1 6= 0

then at most one w ∈ W satisfies ψ(w) = Q. Since the image of ψ is not included in the
zero-set of c0,1, and since dim(W ) = dimV , it follows that ψ is a birational morphism.
In particular, the image of ψ contains a dense Zariski-open subset U of V . Since we
have already established that each element of the image of ψ is equivalent to a member
of {FR}, (10) is proved. This also proves the first part of claim (9). We don’t know
whether {FR} contains all bad field generators of degree 21 up to equivalence.

The aforementioned appendix also describes the possible configurations of singular-
ities at infinity, for a bad field generator F of A = k[2] of degree 21. That analysis
(from the last paragraph of p. 328 to the diagram at the top of p. 330) implies that
∆(F,A) must be one of [2, 3], [2, 3, 3], [2, 3, 3, 3]. It is therefore interesting to note that
these three lists are realized by the family {FR}.

To prove the second part of claim (9), consider elements F andG of {FR} and suppose
that F ∼ G. We may write F = F (1, 1, a0, a1, a2;X, Y ) and G = F (1, 1, b0, b1, b2;X, Y )
with (a0, a1, a2), (b0, b1, b2) ∈ k3. There exists θ ∈ AutkA such that θ

(
k[F ]

)
= k[G];

then θ(F ) = αG + β for some α ∈ k∗ and β ∈ k. The fact that the supports of F
and G are included in 〈(0, 0), (12, 0), (0, 9), (12, 9)〉 \ {(0, 0), (12, 0), (0, 9)} implies that
θ(X) = uX and θ(Y ) = vY for some u, v ∈ k∗. Then we must have F (uX, vY ) =
u12v9G(X, Y ). Write H(X, Y ) = F (uX, vY )−u12v9G(X, Y ) =

∑
i,j hi,jX

iY j; each hi,j
is a polynomial expression in (u, v, a0, a1, a2, b0, b1, b2) that can be computed explicitly,
and we must have hi,j = 0 for all i, j. Calculation gives h9,7 = −4u9v7(u3v2 − 1), so
u3v2 = 1. So there exists r ∈ k∗ such that u = r2 and v = sr−3 where s = ±1. After
substituting these values in the expression of H, we find h11,8 = 3(ra2 − sb2)/r3, so
b2 = sra2. After substituting this value, we find h2,2 = 2(r− s)/r3, so r = s and hence
u = 1 = v. It follows that F (1, 1, a0, a1, a2;X, Y ) = F (1, 1, b0, b1, b2;X, Y ) and hence
that (a0, a1, a2) = (b0, b1, b2). This completes the proof of (9).

Let us also point out that Russell’s polynomial is F (1,−1, 1, 3, 3;Y,X), which is
equivalent to the member F (1, 1,−1, 3,−3;X, Y ) of {FR}, i.e., the member corre-
sponding to ϕ(T ) = (T − 1)3. It has ∆(F,A) = [2, 3] and its Newton tree is given in
Figure 2.

The next example gives a new family of bad field generators that shows that neither
the number of dicriticals nor their degrees are bounded (and we show in 5.15 that these
bad field generators are lean). This family generalizes Jan’s polynomial.
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2.9. Example. Let ϕ(X) = Xn + cn−1X
n−1 + cn−2X

n−2 + · · ·+ c0 ∈ k[X] = k[1] where
n ≥ 4, c0, . . . , cn−1 ∈ k and c0 6= 0. Denote by

ϕ̃(X) = 1 + cn−1X + cn−2X
2 + · · ·+ c0X

n

the reciprocal polynomial of ϕ. Let

FCND(X, Y ) =
1

ϕ̃(Xn−2Y )
(X + cn−1X

n−1Y + · · ·

+ cn−iX
n−iY (Xn−1Y + ϕ̃(Xn−2Y ))i−1 + · · ·+ c0Y (Xn−1Y + ϕ̃(Xn−2Y ))n−1)

Thus FCND ∈ k(X, Y ); since

X + cn−1X
n−1Y + · · ·+ cn−iX

(n−2)i+1Y i + · · ·+ c0X
(n−2)n+1Y n = Xϕ̃(Xn−2Y ),

we have FCND ∈ k[X, Y ]. This polynomial has degree n(n−1)(n−2)+1. The monomial

with top degree is Xn(n−2)2Y (n−1)2 . The Newton polygon has two faces. One face links
the point (1, 0) to the point (n(n− 2)2, (n− 1)2) and has slope (n2 − 3n+ 1)/(n− 1).
The other face links the point (0, 1) to the point (n(n − 2)2, (n − 1)2) and has slope
n− 2. We shall now prove:

(11) FCND is a bad field generator of k[X, Y ] with

∆(FCND,k[X, Y ]) = [n− 2, · · · , n− 2, n− 1],

where the number of dicriticals of degree n−2 is equal to the number of distinct
roots of ϕ.

Let
Φ(X, Y, Z) = Zn(n−1) + cn−1X

n−2Y Z(n−1)2 + · · ·+ c0X
n(n−2)Y n

P (X, Y, Z) = Xn−1Y Zn(n−2) + Φ(X, Y, Z)

Q(X, Y, Z) = XZn(n−1)2 + cn−1X
n−1Y Z(n−1)(n2−n−1) + · · ·

+ cn−iX
n−iY P i−1Z(n−i)(n2−n−1) + · · ·+ c0Y P

n−1

Ft(X, Y, Z) =
Q(X, Y, Z)

Φ(X, Y, Z)
− tZn(n−1)(n−2)+1

Consider first

Φ(1, Y, Z) = Zn(n−1) + cn−1Y Z
(n−1)2 + · · ·+ c0Y

n

P (1, Y, Z) = Y Zn(n−2) + Φ(1, Y, Z)
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Q(1, Y, Z) = Zn(n−1)2 + cn−1Y Z
(n−1)(n2−n+1) + · · ·

+ cn−iY P
i−1(1, Y, Z)Z(n−i)(n2−n+1) + · · ·+ c0Y P

n−1(1, Y, Z)

Ft(1, Y, Z) =
Q(1, Y, Z)

Φ(1, Y, Z)
− tZn(n−1)(n−2)+1

Consider the map Y → Y Zn−2. Then:
Φ(1, Y, Z) = Zn(n−2)Φ1(Y, Z), where Φ1(Y, Z) = Zn + cn−1Y Z

(n−1) + · · ·+ c0Y
n;

P (1, Y, Z) = Zn(n−2)P1(Y, Z), where P1(Y, Z) = Y Zn−2 + Φ1(Y, Z);

Q(1, Y, Z) = Z(n−2)(n2−n+1)Q1(Y, Z), where

Q1(Y, Z) = Zn2−2n+2 + cn−1Y Z
n2−1 + · · ·

+ cn−iY P
i−1
1 (Y, Z)Z(n−i)(n+1) + · · ·+ c0Y P

n−1
1 (Y, Z);

Ft(1, Y, Z) = Z(n−2)(n−1)2F1(Y, Z), where F1(Y, Z) = Q1(Y,Z)
Φ1(Y,Z)

− tZn2−3n+3.

Consider the map Z → Y Z. Then:
Φ1(Y, Z) = Y nϕ(Z);
P1(Y, Z) = Y n−1P2(Y, Z), where P2(Y, Z) = Zn−2 + Y ϕ(Z);

Q1(Y, Z) = Y n2−2n+2Q2(Y, Z), where

Q2(Y, Z) = Zn2−2n+2 + cn−1Y
2(n−1)Zn2−1 + · · ·

+ cn−iY
2(n−i)P i−1

2 (Y, Z)Z(n−i)(n+1) + · · ·+ c0P
n−1
2 (Y, Z);

F1(Y, Z) = Y n2−3n+2F2(Y, Z), where F2(Y, Z) = Q2(Y,Z)
ϕ(Z)

− tY Zn2−3n+3.

Finally, consider the map Y → Y Zn−2. Then:
P2(Y, Z) = Zn−2P3(Y, Z), where P3(Y, Z) = 1 + Y ϕ(Z);
Q2(Y, Z) = Z(n−1)(n−2)Q3(Y, Z), where

Q3(Y, Z) = Zn + cn−1Y
2(n−1)Z(n−1)(2n−1) + · · ·

+ cn−iY
2(n−i)P i−1

3 (Y, Z)Z(n−i)(2n−1) + · · ·+ c0P
n−1
3 (Y, Z);

F2(Y, Z) = Z(n−1)(n−2)F3(Y, Z), where F3(Y, Z) = Q3(Y,Z)
ϕ(Z)

− tY Zn−1.

We have P3(Y, Z) = 1 + c0Y + c1Y Z + · · · , then F3(Y, 0) = (1 + c0Y )n−1. Let
Y1 = 1+c0Y . We get F4(Y1, Z) = Y n−1

1 −tZn−1 +
∑
aα1,α2Y

α1
1 Zα2 with α1 +α2 ≥ n−1.

This proves that, over the point [1 : 0 : 0], we get one dicritical of degree n− 1.
Consider next

Φ(X, 1, Z) = Zn(n−1) + cn−1X
n−2Z(n−1)2 + · · ·+ c0X

n(n−2)

P (X, 1, Z) = Xn−1Zn(n−2) + Φ(X, 1, Z)

Q(X, 1, Z) = XZn(n−1)2 + cn−1X
n−1Z(n−1)(n2−n−1) + · · ·

+ cn−iX
n−iP i−1Z(n−i)(n2−n−1) + · · ·+ c0P

n−1

Ft(X, 1, Z) =
Q(X, 1, Z)

Φ(X, 1, Z)
− tZn(n−1)(n−2)+1
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Consider the map X → XZ. Then:
Φ(X, 1, Z) = Zn(n−2)Φ1(X,Z), where

Φ1(X,Z) = Zn + cn−1X
n−2Zn−1 + · · ·+ c0X

n(n−2);

P (X, 1, Z) = Zn(n−2)P 1(X,Z), where P 1(X,Z) = Xn−1Zn−1 + Φ1(X,Z);
Q(X, 1, Z) = Zn(n−1)(n−2)Q1(X,Z), where

Q1(X,Z) = XZn2−n+1 + cn−1X
n−1Z(n−1)n + · · ·

+ cn−iX
n−i(P 1)i−1Z(n−i)n + · · ·+ c0(P 1)n−1;

Ft(X, 1, Z) = Zn(n−2)2F 1(X,Z), where F 1(X,Z) = Q1(X,Z)
Φ1(X,Z)

− tZn(n−2)+1.

Consider the map Z → ZXn−3. Then:
Φ1(X,Z) = Xn(n−3)Φ2(X,Z), where Φ2(X,Z) = Zn + cn−1XZ

n−1 + · · ·+ c0X
n;

P 1(X,Z) = Xn(n−3)P 2(X,Z), where P 2(X,Z) = X2Zn−1 + Φ2(X,Z);
Q1(X,Z) = Xn(n−1)(n−3)Q2(X,Z), where

Q2(X,Z) = Xn−2Zn2−n+1 + cn−1X
n−1Z(n−1)n + · · ·

+ cn−iX
n−i(P 2)i−1Z(n−i)n + · · ·+ c0(P 2)n−1;

F 1(X,Z) = Xn(n−2)(n−3)F 2(X,Z), where F 2(X,Z) = Q2(X,Z)
Φ2(X,Z)

− tXn−3Zn(n−2)+1.

Consider the map X → XZ. Then:
Φ2(X,Z) = Znϕ̃(X);
P 2(X,Z) = ZnP 3(X,Z), where P 3(X,Z) = X2Z + ϕ̃(X);
Q2(X,Z) = Zn(n−1)Q3(X,Z), where

Q3(X,Z) = Xn−2Zn−1 + cn−1X
n−1Zn−1 + · · ·

+ cn−iX
n−i(P 3)i−1Zn−i + · · ·+ c0(P 3)n−1;

F 2(X,Z) = Zn(n−2)F 3(X,Z), where F 3(X,Z) = Q3(X,Z)
ϕ̃(X)

− tXn−3Zn−2.

One can write

F 3(X,Z) = c0ϕ̃(X)n−2 + Zϕ̃(X)n−3A1(X) + · · ·
+ Zn−3ϕ̃(X)An−3(X)− tXn−3Zn−2 + Zn−1B(X)

This implies that, over the point [0 : 1 : 0], there are m dicriticals of degree n−2 where
m is the number of distinct roots of ϕ. The Newton tree of FCND is in Figure 3. From
that, or from the genus formula, we see that FCND is a rational polynomial, hence a
field generator of k[X, Y ]. So assertion (11) is proved.

Until the end of this section, k is an arbitrary field.

2.10. Notation. Let A = k[2]. Given F ∈ A \ k, we let Γalg(F,A) denote the set of
prime ideals p of A such that the composite k[F ] ↪→ A → A/p is an isomorphism.
We also let Γ(F,A) =

{
V (p) | p ∈ Γalg(F,A)

}
, i.e., Γ(F,A) is the set of curves

C ⊂ SpecA which have the property that the composite C ↪→ SpecA → Spec k[F ] is
an isomorphism. Note that p 7→ V (p) is a bijection Γalg(F,A)→ Γ(F,A).
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Figure 3

We shall now study how field generators behave under birational extensions.

2.11. Definition. Let Φ : X → Y be a morphism of nonsingular algebraic surfaces over
k. Assume that Φ is birational, i.e., that there exist nonempty Zariski-open subsets
U ⊆ X and V ⊆ Y such that Φ restricts to an isomorphism U → V . By a missing
curve of Φ we mean a curve C ⊂ Y such that C ∩Φ(X) is a finite set of closed points.
A contracting curve of Φ is a curve C ⊂ X such that Φ(C) is a point. We write Miss(Φ)
and Cont(Φ) for the sets of missing curves and contracting curves of Φ, respectively.
Note that Miss(Φ) and Cont(Φ) are finite sets.

2.12. Notation. Consider morphisms A2 Φ−→ A2 f−→ A1 where Φ is birational and f is
dominant. Then we write

Misshor(Φ, f) =
{
C ∈ Miss(Φ) | f(C) is a dense subset of A1

}
.

We refer to the elements of Misshor(Φ, f) as the “f -horizontal” missing curves of Φ.

Our next objective is to study how ∆(F,A) and Γ(F,A) behave under a birational
extension of A. This is accomplished by 2.13 and 2.14, which are respectively results
2.9 and 3.11 of [CND14a]. See the introduction for the notation “A � B”.

2.13. Proposition. Let A � B and F ∈ A \ k, and consider the morphisms

SpecB
Φ−→ SpecA

f−→ Spec k[F ]

determined by the inclusions k[F ] ↪→ A ↪→ B. Let C1, . . . , Ch be the distinct elements
of Misshor(Φ, f) and, for each i ∈ {1, . . . , h}, let δi be the degree3 of the morphism
f |Ci : Ci → Spec k[F ].

(a) ∆(F,B) =
[
∆(F,A), δ1, . . . , δh

]
, i.e., ∆(F,B) is the concatenation of ∆(F,A)

and [δ1, . . . , δh]. In particular, dic(F,B) = dic(F,A) + |Misshor(Φ, f)|.
(b) For each i ∈ {1, . . . , h}, δi = 1⇔ Ci ∈ Γ(F,A).

3Let R ⊆ S be integral domains and f : SpecS → SpecR the corresponding morphism of schemes.

Assume that FracS is a finite extension of FracR. Then we define deg f = [FracS : FracR].
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2.14. Lemma. Let A � B and F ∈ A \ k, and consider the morphisms

SpecB
Φ−→ SpecA

f−→ Spec k[F ]

determined by the inclusions k[F ] ↪→ A ↪→ B. Then:

(a) For each C ′ ∈ Γ(F,B), Φ(C ′) ∈ Γ(F,A).
(b) The set map γ : Γ(F,B) → Γ(F,A), C ′ 7→ Φ(C ′), is injective, and its image

is the set of C ∈ Γ(F,A) for which there exists a curve C ′ ⊂ SpecB such that
Φ|C′ is an isomorphism C ′ → C.

3. The cardinality of Γ(F,A) for field generators

Proposition 2.13 shows the importance of Γ(F,A) for field generators. We will see
two important features of that set: if F is a field generator of A = k[2] then (i) for
a suitable (X, Y ) ∈ C(A), all elements of Γ(F,A) are lines “X = constant” or “Y =
constant”; (ii) except for a very special case, the cardinality of Γ(F,A) is at most 2.

3.1. Definition. Let A = k[2].

(1) Given F ∈ A and a pair γ = (X, Y ) such that A = k[X, Y ], write F =∑
i,j aijX

iY j where aij ∈ k for all i, j; then suppγ(F ) =
{

(i, j) ∈ N2 | aij 6= 0
}

is called the support of F with respect to γ.
(2) Given a subset S of R2, let 〈S〉 denote its convex hull.
(3) Given F ∈ A, we write Rec(F,A) for the set of ordered pairs γ = (X, Y )

satisfying A = k[X, Y ] and

there exist m,n ≥ 1 such that (m,n) ∈ suppγ(F ) ⊆ 〈(0, 0), (m, 0), (0, n), (m,n)〉.
Let Rec+(F,A) be the set of γ = (X, Y ) ∈ Rec(F,A) satisfying the additional
condition “m ≤ n”. Clearly,

Rec+(F,A) 6= ∅⇔ Rec(F,A) 6= ∅.
(4) By a rectangular element of A we mean an F ∈ A satisfying Rec(F,A) 6= ∅.

See 3.6, below, to understand why the notion of rectangular element is relevant for
studying field generators.

3.2. Lemma ([CND14a, 3.4]). Let F be a rectangular element of A = k[2].

(a) If (X, Y ) ∈ Rec(F,A) then

Rec(F,A) =
{

(aX + b, cY + d) | a, b, c, d ∈ k, ac 6= 0
}

∪
{

(cY + d, aX + b) | a, b, c, d ∈ k, ac 6= 0
}
.

(b) Up to order, the pair (m,n) in 3.1(3) depends only on (F,A), i.e., is independent
of the choice of γ ∈ Rec(F,A).

3.3. Definition. For each rectangular element F of A = k[2] we define

bidegA(F ) = (degX(F ), degY (F )) for any (X, Y ) ∈ Rec+(F,A).
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By 3.2, bidegA(F ) is well defined and depends only on (F,A).
Moreover, if (m,n) = bidegA(F ) and γ ∈ Rec+(F,A) then

1 ≤ m ≤ n and (m,n) ∈ suppγ(F ) ⊆ 〈(0, 0), (m, 0), (0, n), (m,n)〉.

3.4. Remark. Let F be a rectangular element of A = k[2] and let (m,n) = bidegA(F ).
It follows from 3.2(b) that if m = n then Rec+(F,A) = Rec(F,A).

We shall now consider the set Γalg(F,A) defined in 2.10. By the next fact, Γalg(F,A)
is easy to describe when F is a rectangular element of A.

3.5. Lemma ([CND14a, 3.7]). Let F be a rectangular element of A = k[2], γ = (X, Y ) ∈
Rec(F,A) and (m,n) = (degX(F ), degY (F )). Recall that

(m,n) ∈ suppγ(F ) ⊆ 〈(0, 0), (m, 0), (0, n), (m,n)〉.
Write F =

∑
i,j aijX

iY j (aij ∈ k) and define

Fver(Y ) =
∑n

j=0 am,jY
j and Fhor(X) =

∑m
i=0 ai,nX

i.

(a) Γalg(F,A) is equal to{
(X − a) | a ∈ k and degF (a, Y ) = 1

}
∪
{

(Y − b) | b ∈ k and degF (X, b) = 1
}
.

(b) If min(m,n) > 1 then Γalg(F,A) is included in{
(X − a) | a ∈ k and Fhor(a) = 0

}
∪
{

(Y − b) | b ∈ k and Fver(b) = 0
}
.

The next result (3.6) is due to Russell, and has proved to be very useful in the
study of field generators. Here, one should observe that no variable of A = k[2] is a
rectangular element of A, because any rectangular element has two points at infinity.

3.6. Theorem ([Rus75, 3.7 and 4.5]). If F is a field generator of A = k[2] which is not
a variable of A, then F is a rectangular element of A.

We now turn our attention to the cardinality of Γ(F,A) where F is a field generator
of A = k[2]. Note that there is no upper bound on |Γ(F,A)| for rectangular elements
F of A and even for certain types of field generators:

3.7. Examples. Let A = k[X, Y ] = k[2].

(a) Let F = u(Y )X2 +X, where deg u(Y ) > 1; then F is a rectangular element of
A and 3.5 implies that |Γ(F,A)| equals the number of roots of u(Y ).

(b) Assume that k is infinite and let F = α(Y )X + β(Y ) where deg β(Y ) ≤
degα(Y ) > 0; then 3.5 implies that |Γ(F,A)| = |k|. Since k(F, Y ) = k(X, Y ),
F is a good field generator of A (of an especially simple type).

3.8. Theorem ([CND14a, 4.11]). Let F be a field generator of A = k[2] satisfying
|Γ(F,A)| > 2. Then there exists (X, Y ) such that A = k[X, Y ] and F = α(Y )X+β(Y )
for some α(Y ), β(Y ) ∈ k[Y ].

The above theorem is one of the main results of [CND14a]. Its corollary (below) has
interesting consequences in the classification of field generators (for instance, 3.9(a) is
needed in the proof of 4.1(b)).
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3.9. Corollary ([CND14a, 4.12]). If F is a bad field generator of A = k[2] then the
following hold.

(a) |Γ(F,A)| ≤ 2
(b) Rec(F,A) 6= ∅ and the pair (m,n) = bidegA(F ) satisfies 2 ≤ m ≤ n.
(c) There exists (X, Y ) ∈ Rec(F,A) such that

Γalg(F,A) ⊆ {(X), (Y )} or Γalg(F,A) ⊆ {(X), (X − 1)}.

3.10. Examples. Using 3.5, we see that Γalg(FJ , A) = {(X), (Y )} = Γalg(FCND, A) and
Γalg(FR, A) = {(X)}. We will see examples of bad field generators F of A satisfying
Γalg(F,A) = ∅, but we do not have examples such that Γalg(F,A) = {(X), (X − 1)}.

4. Very good and very bad field generators

The next proposition gives a partial characterization of very good field generators.
For the moment, this is the best that we can say on that subject. (In part (a), let us
agree that gcd∅ =∞.)

4.1. Proposition ([CND14a, 5.3]). Let F be a field generator of A = k[2] and ∆(F,A) =
[d1, . . . , dt].

(a) If gcd
(
{d1, . . . , dt} \ {1}

)
> 1 then F is a very good field generator of A. In

particular, if at most one i ∈ {1, . . . , t} satisfies di > 1 then F is a very good
field generator of A.

(b) If at least three i ∈ {1, . . . , t} satisfy di = 1 then F is a very good field generator
of A.

(c) If F is a good but not very good field generator of A then

∆(F,A) = [1, . . . , 1, e1, . . . , es]

where “1” occurs either 1 or 2 times, s ≥ 2, min(e1, . . . , es) > 1 and
gcd(e1, . . . , es) = 1.

4.2. Remark. By 4.1(a), the polynomials classified in [MS80], [NN02] and [Sas06] are
special cases of very good field generators. This gives many complicated examples of
very good field generators.

4.3. Example. Let F be a bad field generator of A = k[X, Y ] such that Γalg(F,A) =
{(X), (Y )} and ∆(F,A) = [3, 4]. For example take FCND for ϕ(X) = (X−1)5. Let B =

k[X/Y, Y 2/X] and note that A � B. Consider the morphisms SpecB
Φ−→ SpecA

f−→
Spec k[F ] determined by the inclusions k[F ] ↪→ A ↪→ B. Then the missing curves of Φ
are C1 = V (X) and C2 = V (Y ) and these are f -horizontal, so Misshor(Φ, f) = {C1, C2}.
In the notation of 2.13 we have δ1 = δ2 = 1 (because C1, C2 ∈ Γ(F,A)), so that result
implies that ∆(F,B) = [3, 4, 1, 1]. Note that F is not a very good field generator of B
(because it is bad in A). This shows that, in 4.1(b), one cannot replace “at least three”
by “at least two”; and in the second part of 4.1(a), one cannot replace “at most one”
by “at most two”.
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Another application of 2.13 shows that F is a good field generator of B′ = k[X, Y/X]
which is not very good and which has ∆(F,B′) = [3, 4, 1].

4.4. Remark. We shall give in 5.13 an example of a very good field generator F of
A = k[2] with ∆(F,A) = [3, 4, 1]. So the converse of 4.1(c) is not true. Moreover,
noting that ∆(F,B′) = [3, 4, 1] in 4.3, this will also show that

There exist good field generators F,G of A = k[2] such that F is very
good, G is not very good, and ∆(F,A) = [3, 4, 1] = ∆(G,A).

So the degree list ∆(F,A) does not characterize very good field generators among good
field generators.

The set Γalg(F,A) characterizes very bad field generators among bad field generators:
result 4.5(a) gives such a characterization and, in fact, makes it easy to decide whether
a given bad field generator is very bad.

4.5. Proposition ([CND14a, 5.8]). Let F be a bad field generator of A = k[2].

(a) F is a very bad field generator of A if and only if Γalg(F,A) = ∅.
(b) Suppose that Γalg(F,A) 6= ∅. Then there exists (X, Y ) such that A = k[X, Y ]

and (X) ∈ Γalg(F,A). For any such pair (X, Y ), F is a good field generator of
k[X, Y/X].

4.6. Example. Let F be a bad field generator of A = k[X, Y ] = k[2] such that
Γalg(F,A) = {(X)} (for instance, F = FR for any choice of ϕ; see 3.10). By 4.5,
F is not a very bad field generator of A. Let B = k[X/(Y − 1), Y ] and note that
F ∈ A � B; so F is a field generator of B and we claim:

(12) F is a very bad field generator of B.

To see this, consider SpecB
Φ−→ SpecA

f−→ Spec k[F ] as in 2.13. We have Γ(F,A) = {D}
where D = V (X) ⊂ SpecA and Miss Φ = {C} where C = V (Y − 1) ⊂ SpecA. If f(C)
is a point then Misshor(Φ, f) = ∅ and 2.13(a) implies that ∆(F,B) = ∆(F,A); if f(C)
is not a point then Misshor(Φ, f) = {C} and 2.13(a) implies that ∆(F,B) = [∆(F,A), δ]
where δ is the degree of f |C : C → SpecA, and where δ > 1 by 2.13(b) and because
C /∈ Γ(F,A). Since “1” does not occur in ∆(F,A) by 2.5, it follows (in both cases)
that it does not occur in ∆(F,B) either; so (by 2.5 again) F is a bad field generator
of B.

In view of 4.5, there only remains to show that Γ(F,B) = ∅. Suppose that there
exists an element D′ of Γ(F,B). Then 2.14 implies that Φ|D′ : D′ → D is an isomor-
phism. This is not the case, because D * im Φ (the maximal ideal (X, Y ) ∈ SpecA is
a point of D but not of im Φ). This proves (12).

Observe that the very bad field generators (of B) constructed in 4.6 are not lean in
B, due to the method of construction. All examples of very bad field generators given
in [CND14a] are constructed by that same method, and hence are not lean. In 5.14,
below, we give the first example of a very bad field generator that is also lean.
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5. Lean field generators

See the introduction for the statement of the problems “(i)” and “(ii)”, that will
occupy us in this section. See in particular 1.2 for the definition of the property of
being lean. We immediately observe:

5.1. Lemma. If F is a good field generator of A = k[2], then F is not lean in A.

Proof. Since F is a good field generator of A, we may pick G ∈ A such that FracA =
k(F,G); then F ∈ k[F, FG] � A and k[F, FG] 6= A. �

The paper [CND] (in preparation) contains the following result:

5.2. Theorem. For F ∈ A = k[2], the following are equivalent:

(a) F ∈ A does not have a lean factorization.
(b) There exists a very good field generator G of A such that F ∈ k[G].

We shall now give the proof of the special case 5.4 of 5.2, because it is considerably
simpler than that of the general case, and because we only need this special case in
the present paper. The proof of the special case is based on simple minded degree
considerations, an approach that does not seem to work in the general case. See the
introduction for the notations regarding degree.

5.3. Lemma. Let F be a rectangular element of A = k[2].

(a) degA(F ) = degρ(F ) for any ρ ∈ Rec(F,A).

(b) degA(F ) < degB(F ) for every strict inclusion A ⊂ B = k[2].

Proof. Consider an inclusion A ⊆ B where A = k[2], B = k[2] and F is a rectangular
element of A. Choose γ = (X, Y ) ∈ C(B) such that degγ(F ) = degB(F ). Choose
ρ = (U, V ) ∈ Rec(F,A); then

there exist m,n ≥ 1 such that (m,n) ∈ suppρ(F ) ⊆ 〈(0, 0), (m, 0), (0, n), (m,n)〉.
If we define e1 = degγ(U) and e2 = degγ(V ) then degγ(U

mV n) = me1 + ne2 and, for

each (i, j) ∈ suppρ(F ) \ {(m,n)}, degγ(U
iV i) = ie1 + je2 < me1 + ne2; so

degB(F ) = degγ F = me1 + ne2.

Since degρ(F ) = m+ n, we have

(13) degB(F )− degρ(F ) ≥ m(e1 − 1) + n(e2 − 1) ≥ 0

and consequently

(14) degA(F ) ≤ degρ(F ) ≤ degB(F ).

Assertion (a) follows from the special case A = B of (14). To prove (b) we note that
the condition degA(F ) = degB(F ) implies (by (a) and (13)) that e1 = 1 = e2, so
A = k[U, V ] = k[X, Y ] = B. �

5.4. Proposition. For a field generator F of A = k[2], the following are equivalent:

(a) F ∈ A has a lean factorization.
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(b) F is not a very good field generator of A.

Proof. Suppose that (b) holds. Then there exists A′ such that F ∈ A′ � A and F
is a bad field generator of A′. Consider the set Σ =

{
R | F ∈ R � A′

}
, which is

nonempty since A′ ∈ Σ. For each R ∈ Σ, F is a bad field generator of R and hence
(by 3.6) a rectangular element of R. So 5.3 implies that if R1 ⊂ R2 is a strict inclusion
with R1, R2 ∈ Σ, then degR1

(F ) < degR2
(F ). It follows that Σ has a minimal element

R0. Then F ∈ R0 � A and F is lean in R0, so (a) is true.
Conversely, suppose that (a) holds. Then there exists A′ such that F ∈ A′ � A and

F is lean in A′. Then (by 5.1) F is a bad field generator of A′, so (b) holds. �

Result 5.4 partially solves problem “(i)” stated in the introduction. To complete
the solution of (i) there would remain to classify very good field generators, but this
question is open.

We shall now make some modest contributions to the problem (called “(ii)” in the
introduction) of classifying lean field generators. Recall (5.1) that if a field generator
is lean then it is bad. Also observe that, by 5.4, it is a priori clear that lean field
generators exist (we know that there exists a bad field generator F of A = k[2], and 5.4
implies that there exists A′ satisfying F ∈ A′ � A and such that F is lean in A′; then
F is a bad field generator of A′ that is lean in A′). For specific examples, consider 2.8
with:

5.5. Corollary. Every bad field generator of degree 21 is lean.

Proof. Let F be a bad field generator of B = k[2] such that degB(F ) = 21. By
contradiction, assume that F is not lean in B. Then F ∈ A � B for some A such that
A 6= B. Then F is a bad field generator of A, so 2.7 gives the first inequality in

21 ≤ degA(F ) < degB(F )

while the second inequality is 5.3. This contradicts the assumption. �

It is much more difficult to determine whether there exist very bad field generators
that are lean. In fact this question remained open for several years. The very bad field
generators exhibited in 4.6 are—by construction—not lean. In 5.14, below, we give
an example of a very bad field generator that is lean. First, we need to develop some
tools.

5.6. Notation. Given a birational morphism Φ : A2 → A2 and a coordinate system γ
of A2, we write

δγ(Φ) =

{
max

{
degγ(C) | C ∈ Cont(Φ)

}
, if Cont(Φ) 6= ∅;

1, if Cont(Φ) = ∅.

See 2.11 for the notation Cont(Φ), and observe4 that Cont(Φ) is empty if and only if
Φ is an automorphism of A2.

4This is well known and easy to show when k is algebraically closed (e.g., [CND14b, 2.6(b)]), and

it is straightforward to generalize this to arbitrary k.
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5.7. Lemma. Assume that k is algebraically closed. Let F ∈ A � B where F is a
rectangular element of A and let Φ : SpecB → SpecA be the morphism determined by
the inclusion A→ B. Then

degA(F ) ≤
degγ(F )

δγ(Φ)
for every γ ∈ C(B).

Moreover, if A 6= B then the above inequality is strict for all γ ∈ C(B).

Proof. Let γ = (X, Y ) ∈ C(B). If Cont(Φ) = ∅ then δγ(Φ) = 1 and the claim is
an immediate consequence of 5.3. So we may assume throughout that Cont(Φ) 6= ∅.
Under this assumption we shall prove that degA(F ) < degγ(F )/δγ(Φ).

Choose C ∈ Cont(Φ) such that δγ(Φ) = degγ(C); let P be an irreducible element of
B such that C = V (P ). Pick ρ = (U, V ) ∈ Rec(F,A). Let us first prove that

(15) min(e1, e2) ≥ δγ(Φ)

where we define e1 = degγ U and e2 = degγ V . Note that Φ is given by the formula
Φ(x, y) = (U(x, y), V (x, y)), where we use coordinates X, Y (resp. U, V ) to identify the
set of closed points of SpecB (resp. SpecA) with k2. As Φ maps V (P ) to a point (a, b),
we have P | gcdB(U − a, V − b). In particular,

(16) min(e1, e2) = min(degγ U, degγ V ) ≥ degγ P = degγ C = δγ(Φ).

So (15) is proved. Since ρ ∈ Rec(F,A),

there exist m,n ≥ 1 such that (m,n) ∈ suppρ(F ) ⊆ 〈(0, 0), (m, 0), (0, n), (m,n)〉.
We have degγ(U

mV n) = me1+ne2 and, for each (i, j) ∈ suppρ(F )\{(m,n)}, degγ(U
iV i) =

ie1 + je2 < me1 + ne2; so

(17) degγ F = me1 + ne2 ≥ (m+ n) min(e1, e2).

Since m+ n = degρ(F ) = degA(F ) by 5.3, inequalities (15) and (17) imply

(18) degA(F ) ≤
degγ(F )

δγ(Φ)
.

Assume for a moment that equality holds in (18). Then equality must hold in (17)
(so e1 = e2) and in (16) (so degγ P = degγ U = degγ V ). As P | gcdB(U − a, V − b),
it follows that P,U − a, V − b are associates, so U, V are algebraically dependent, a
contradiction. So inequality (18) is strict, and the lemma is proved. �

5.8. Notation. Let B = k[2] and F ∈ B \ k. Write ∆(F,B) = [d1, · · · , dt] and let
D(F,B) be the set of nonempty subsets I of {1, . . . , t} satisfying ∀i∈I(di 6= 1) and
gcd

{
di | i ∈ I

}
= 1. Define:

δ(F,B) =

{
min

{ ∑
i∈I di | I ∈ D(F,B)

}
, if D(F,B) 6= ∅;

∞, if D(F,B) = ∅.
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5.9. Lemma. Let F be a field generator of B = k[2]. Then

δ(F,B) ≤ degA(F ) ≤ degB(F )

for every A satisfying F ∈ A � B and such that F is a bad field generator of A.

Proof. Suppose that F ∈ A � B and that F is a bad field generator of A. We have
degA(F ) ≤ degB(F ) by 5.3. By 2.13, ∆(F,A) is a sublist of ∆(F,B); so we may write
∆(F,A) = [d1, . . . , ds] and ∆(F,B) = [d1, . . . , dt] where s ≤ t. Since F is a bad field
generator of A, we have ∀i∈{1,...,s}(di 6= 1) by 2.5 and gcd(d1, . . . , ds) = 1 by 2.3, so
{1, . . . , s} ∈ D(F,B) and hence

∑s
i=1 di ≥ δ(F,B). Since degA(F ) ≥

∑s
i=1 di by 2.4,

we are done. �

5.10. Notation. Let F ∈ B \ k, where B = k[2]. For each γ ∈ C(B) we define

subdegγ(F ) = min
{

degγ(P ) | P ∈ P
}

where P denotes the set of irreducible elements P of B such that P | (F − λ) in B for
some λ ∈ k.

5.11. Corollary. Assume that k is algebraically closed and let F be a field generator
of B = k[2]. If there exists γ ∈ C(B) satisfying

δ(F,B) ≥
degγ(F )

subdegγ(F )

then exactly one of the following conditions is satisfied:

(a) F is a bad field generator of B and is lean in B;
(b) F is a very good field generator of B.

Proof. Assume that there exists a γ as in the above statement and that condition (b)
is not satisfied. Then E 6= ∅, where we define

E =
{
A | F ∈ A � B and F is a bad field generator of A

}
.

We claim that E = {B}. Indeed, assume the contrary. Because E 6= ∅, there exists
an A ∈ E satisfying A 6= B. Then the birational morphism Φ : SpecB → SpecA
is not an isomorphism; so (cf. [CND14b, 2.6(b)]) Cont(Φ) 6= ∅ and each element of
Cont(Φ) is an irreducible component of a fiber of SpecB → Spec k[F ]; consequently,
δγ(Φ) ≥ subdegγ(F ). By the assumption, it follows that δ(F,B) ≥ degγ(F )/δγ(Φ).
Note that F is a rectangular element of A, because it is a bad field generator of A. So
by 5.7 we get degγ(F )/δγ(Φ) > degA(F ), so degA(F ) < δ(F,B), which contradicts 5.9.

This contradiction shows that E = {B} and hence that (a) holds. �

The following is a technical lemma that we need in 5.13, 5.14 and 5.15. We say that
an element r of a ring R “is a power” if r = rk0 for some r0 ∈ R and k > 1.

5.12. Lemma. Assume that k is algebraically closed and that F is a rational polynomial
of A = k[2]. Let d = dic(F,A), let t1, . . . , td−1 be distinct elements of k and suppose that,
for each i ∈ {1, . . . , d− 1}, we have a factorization F − ti = GiHi with Gi, Hi ∈ A \ k.
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Moreover, assume that for each i ∈ {1, . . . , d− 1} there exists (X, Y ) ∈ C(A) such that
one of the following conditions is satisfied:

(i) Gi(X, 0) /∈ k and Gi(X, 0) is not a power, Hi(X, 0) /∈ k and Hi(X, 0) is not a
power, and gcd(Gi(X, 0), Hi(X, 0)) = 1;

(ii) Gi(X, 0) ∈ k∗, Hi(X, 0) /∈ k and Hi(X, 0) is not a power, Gi(0, Y ) /∈ k and
Gi(0, Y ) is not a power, and Hi(0, Y ) ∈ k∗.

Then
{
t ∈ k | F − t is reducible in A

}
= {t1, . . . , td−1} and

F − ti = GiHi is the prime factorization of F − ti in A

for each i ∈ {1, . . . , d− 1}.

Proof. For each t ∈ k, denote by nt the number of irreducible components of the closed
subset “F = t” of SpecA. Then (see, e.g., [Dai14, 1.11]), since k is algebraically closed
and F is a rational polynomial of A = k[2],

(19) d− 1 =
∑

t∈k(nt − 1).

Let S =
{
t ∈ k | F − t is reducible in A

}
and note that if t ∈ S then nt > 1

(otherwise F − t would be a power, so F − s would be reducible for all s ∈ k, which
would contradict the definition of rational polynomial). Then formula (19) implies that
S = {t1, . . . , td−1} and that nt = 2 for all t ∈ S.

Fix i ∈ {1, . . . , d − 1}; let us prove that Gi, Hi are irreducible. Since nti = 2, there
exist irreducible P1, P2 ∈ A such that Gi = P k1

1 P k2
2 and Hi = P l1

1 P
l2
2 with k1 + k2 ≥ 1

and l1 + l2 ≥ 1. Interchanging P1, P2 if necessary, we may arrange that k1 ≥ 1. Choose
(X, Y ) ∈ C(A) such that (i) or (ii) holds. Given M(X, Y ) ∈ k[X, Y ] = A, write

M = M(X, 0) and M = M(0, Y ). We have Gi = P
k1
1 P

k2
2 and similarly for Gi, H i, Hi.

Assume that (ii) holds. Then Gi ∈ k∗, Gi /∈ k, H i /∈ k and Hi ∈ k∗, so:

k1 > 0
Gi∈k∗ +3 P1 ∈ k∗

Hi /∈k +3

Hi /∈k
��

P2 /∈ k
Gi∈k∗ +3 k2 = 0

l2 > 0
Hi∈k∗ +3 P2 ∈ k∗

Gi /∈k +3 P1 /∈ k
Hi∈k∗ +3 l1 = 0,

so Gi = P k1
1 and Hi = P l2

2 . Since Gi and Hi are not powers we get k1 = 1 = l2, so
Gi, Hi are irreducible (in case (ii)). The argument in case (i) is left to the reader. �

The following examples construct field generators and use 5.11 to establish their
properties. The relevance of Example 5.13 is explained in 4.4.



24 PIERRETTE CASSOU-NOGUÈS AND DANIEL DAIGLE

5.13. Example. Define F ∈ A = k[x, y] by

F (x, y) = 2 + x+ 27x9y3 + 2y + 80x4y2 + 9yx+ 16yx2 + 91x5y2 + 14x3y

+ 12x20y7 + 75x17y6 + 196x14y5 + 274x11y4 + 8x28y10 + 73x25y9 + 296x22y8

+ 700x19y7 + 1064x16y6 + 1078x13y5 + 728x10y4 + 316x7y3 + 32x6y2 + 8x12y4

+ 216x8y3 + 2x36y13 + 24x33y12 + 132x30y11 + 440x27y10 + 990x24y9 + 1584x21y8

+ 1848x18y7 + 1584x15y6 + 990x12y5 + 440x9y4 + 132x6y3 + 24x3y2 + 2x4y.

The polynomial F is a rectangular polynomial of bidegree (36, 13). We claim:

(20) F is a very good field generator of A with ∆(F,A) = [1, 3, 4].

First note that the Newton polygon of F has 3 faces with face polynomial f1(x, y) =
y(x3y + 1)12, f2(x, y) = x4y(x8y3 + 1)4 and f3(x, y) = x + x4y. The last one produces
a dicritical of degree 1. We study the two other.

Let Fh(x, y, z) = (F (x/z, y/z)− t)z49.
We first consider Fh(x, 1, z) and we apply the blowups x → xz divided by z36,

z → zx2 divided by x24 and x → xz divided by z12 and then the change x → x − 1.
We get

2x12 − x8z + x4z2 + (1− t)z3 +
∑

aα1,α2x
α1zα2

with α1 + 4α2 > 12. Then the face with face polynomial f1 produces a dicritical of
degree 3.

Now consider Fh(1, y, z) and apply y → yz3 divided by z39, z → zy divided by y9

and y → yz2 divided by z8. Apply the change y → y − 1. We get

2y4 − 23y2z + 100y2z2 − 194yz3 + (t+ 140)z3 +
∑

bα1,α2x
α1zα2

with α1 + α2 > 4, which proves that we have a dicritical of degree 4. So ∆(F,A) =
[1, 3, 4]. The Newton tree at infinity of this polynomial is shown in Figure 4.
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−8

3

Figure 4

It is easy to check that F is a rational polynomial (hence a field generator) of A.
Two fibers of F are reducible namely, let

h1(x, y) = x+ 2 + 8x9y3 + 8x3y + 12x6y2 + 2x12y4 + 2x4y,
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h2(x, y) = x24y9 + 8x21y8 + 28x18y7 + 3x16y6 + 56x15y6 + 16x13y5

+ 70x12y5 + 34x10y4 + 56x9y4 + 3x8y3 + 36x7y3 + 28x6y3 + 8x5y2

+ 19x4y2 + 8x3y2 + 6yx2 + 4yx+ 1 + y,

h3(x, y) = x9y3 + 1 + x+ 3x3y + 3x6y2,

h4(x, y) = 2x27y10 + 18x24y9 + 72x21y8 + 6x19y7 + 168x18y7 + 37x16y6

+ 252x15y6 + 95x13y5 + 252x12y5 + 6x11y4 + 130x10y4 + 168x9y4 + 20x8y3

+ 100x7y3 + 72x6y3 + 23x5y2 + 41x4y2 + 18x3y2 + 2x3y + 9yx2 + 7yx+ 1 + 2y.

We have F (x, y) = h1(x, y)h2(x, y) and F (x, y) − 1 = h3(x, y)h4(x, y); then 5.12(ii)
implies that these are the prime factorizations of F and F − 1 respectively, and that
F − t is irreducible for all t ∈ k \ {0, 1}. So subdegγ(F ) = 12 (where γ = (x, y)) and

δ(F,A) = 7 >
49

12
=

degγ(F )

subdegγ(F )
.

By 5.11, F is a very good field generator of A, so (20) is proved.

5.14. Example. Let A = k[v, w] = k[2]. Define P,Q ∈ A by

P = v4(vw − 1)14 + w2(v3w2 + 1)6 − v18w14 − 70v14w11 + 374v13w10

+ (−140v11 − 1210v12)w9 + (588v10 + 2640v11)w8

+ (−140v8 − 1464v9 − 4092v10)w7 + (430v7 + 2394v8 + 4620v9)w6

+ (−70v5 − 757v6 − 2688v7 − 3828v8)w5 + (2100v6 + 137v4 + 2310v7 + 835v5)w4

+(−1128v5−990v6−590v4−14v2−142v3)w3 +(260v3 +81v2 +286v5 +399v4 +12v)w2

+ (−84v3 − 50v4 − 24v − 65v2 − 3)w + 3 + 7v + 8v2 + 4v3,

Q = v5(vw − 1)13 + w(v3w2 + 1)6 − v18w13 − 65v14w10 + 320v13w9

+ (−130v11 − 945v12)w8 + (502v10 + 1860v11)w7 + (−2562v10 − 130v8 − 1134v9)w6

+ (1652v8 + 366v7 + 2520v9)w5 + (−578v6 − 1770v8 − 65v5 − 1610v7)w4

+ (552v5 + 1050v6 + 116v4 + 870v7)w3 + (−318v4 − 104v3 − 285v6 − 13v2 − 442v5)w2

+ (102v3 + 109v4 + 46v2 + 10v + 56v5)w − 1− 8v − 12v3 − 5v4 − 14v2.

Let
F = PQ ∈ A.

Then F is a rectangular polynomial of degree 63. Its Newton tree at infinity is in
Figure 5. It follows that F is a rational polynomial (hence a field generator) of A with
∆(F,A) = [9, 2]. We claim:

(21) F is a very bad field generator of A that is lean in A.
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Indeed, we have Γalg(F,A) ⊆ {(v), (w)} by 3.5(b); as degF (v, 0) = 9 and degF (0, w) =
3, 3.5(a) gives Γalg(F,A) = ∅. Then F is a very bad field generator of A by 4.5.

Lemma 5.12(i) implies that F − t is irreducible for every t ∈ k∗ and that F = PQ is
the prime factorization of F ; thus subdegγ(F ) = degγ(Q) = 31 (where γ = (v, w)) and

δ(F,A) = 11 >
63

31
=

degγ(F )

subdegγ(F )
.

So 5.11 implies that F is lean in A, i.e., (21) is proved.

5.15. Example (Continuation of 2.9). We showed in 2.9 that the polynomials FCND
are bad field generators of k[X, Y ]. We now prove:

The polynomials FCND are lean in k[X, Y ].

Let ϕ(X) =
∏

(X − ai)mi . Define P (X, Y ) = Xn−1Y + ϕ̃(Xn−2Y ). We have

FCND(X, Y ) =
1

ϕ̃(Xn−2Y )
(X + Y P n−1(X, Y )(cn−1(

X

P (X, Y )
)n−1 + · · ·+ c0))

FCND(X, Y ) =
1

ϕ̃(Xn−2Y )
(X + Y P n−1(X, Y )(ϕ(

X

P (X, Y )
)− (

X

P (X, Y )
)n))

FCND(X, Y ) =
Y

ϕ̃(Xn−2Y )P (X, Y )

∏
(X − aiP (X, Y ))mi − X

P (X, Y )

Let a ∈ k be a root of the polynomial ϕ (observe that a 6= 0). Then

FCND − a = RaQa

where Ra = X − aP (X, Y ) and Qa ∈ k[X, Y ]. Note that degγ(Ra) = n(n − 1) <
degγ(Qa) (γ = (X, Y )). Also,

F (X, 0)− a = X − a and Ra(X, 0) = X − a =⇒ Qa(X, 0) = 1
F (0, Y )− a = c0Y − a and Ra(0, Y ) = −a =⇒ Qa(0, Y ) = (−c0/a)Y + 1.

By 5.12(ii), we find that
{
t ∈ k | FCND − t is reducible

}
is the set of roots of ϕ

and that, for each root a, FCND − a = RaQa is the prime factorization of FCND − a.
Consequently, subdegγ(FCND) = n(n− 1). Then

δ(FCND,k[X, Y ]) = 2n− 3 ≥ n(n− 1)(n− 2) + 1

n(n− 1)
=

degγ(FCND)

subdegγ(FCND)
,

so 5.11 implies that FCND is lean in k[X, Y ].
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5.16. Remark. Let A = k[2]. Given F ∈ A \ k, let us use the temporary notation

m(F,A) = min(t, d1, . . . , dt) where ∆(F,A) = [d1, . . . , dt].

Then 2.9 and 5.15 show that the set{
m(F,A) | F is a bad field generator of A which is lean in A

}
is not bounded.

5.17. Remark. The polynomial5 f(x, y) = x((x2y3 +1)2 +xy2)2 is a bad field generator
of degree 21 in B = k[x, y] with ∆(f,B) = [2, 3]. It has the same Newton tree as
Russell’s polynomial. It is a lean bad field generator such that

δ(f,B) = 5 < 21 =
degγ(f)

subdegγ(f)
where γ = (x, y).

Now the same f is a bad field generator of B′ = k[x, y/x] of degree 33, with ∆(f,B′) =
[2, 3], and which is not lean in B′. So there exist bad field generators with two dicriticals
and which are not lean, and there exist lean field generators f of B satisfying

δ(f,B) <
degγ(f)

subdegγ(f)
.

One has to note that in those two cases the reducible fiber is not reduced.

Part II: Birational endomorphisms of the affine plane

Throughout Part II, k denotes an algebraically closed field of arbitrary characteristic
and A2 = A2

k is the affine plane over k.

6. Introduction

By a birational endomorphism of A2, we mean a birational morphism from A2 to
A2 (cf. 2.11). The set Bir(A2) of birational endomorphisms of A2 is a monoid under
composition of morphisms,6 and the group of invertible elements of this monoid is the
automorphism group Aut(A2) of A2. An element f of Bir(A2) is irreducible if it is not
invertible and, for every factorization f = h ◦ g of f with g, h ∈ Bir(A2), one of g, h is
invertible.

The birational morphism c : A2 → A2, c(x, y) = (x, xy), is an example of a non-
invertible element of Bir(A2). One can ask:

(∗) Is Aut(A2) ∪ {c} a generating set for the monoid Bir(A2)?

That question was posed in Abhyankar’s seminar at Purdue University in the early 70s,
and was given a negative answer by P. Russell, who gave an example (which appeared
later in [Dai91a, 4.7]) of an irreducible element of Bir(A2) which is not of the form
u ◦ c ◦ v with u, v ∈ Aut(A2).

5Let g be the element of the family {FR} of 2.8 obtained by setting a0 = a1 = a2 = 0; then

f(x, y) = g(y, x).
6In fact Bir(A2) is a cancellative monoid, since it is included in the Cremona group of P2.
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The above question (∗) and its answer eventually gave rise to further studies of
the monoid Bir(A2). The reader is referred to [CND14b] for a summary of the state
of knowledge and a bibliography of this subject. Our aim, here, is to briefly review
some results of [CND14b] that are directly related to question (∗). Section 7 gathers
some observations that show that if S is any subset of Bir(A2) such that Aut(A2) ∪ S
generates Bir(A2), then S has to be large. Section 8 reviews what is known about the
submonoid A of Bir(A2) generated by the set Aut(A2) ∪ {c}.

Let us give some definitions, notations, and facts.

Elements f, g ∈ Bir(A2) are said to be equivalent (f ∼ g) if f = u ◦ g ◦ v for some
u, v ∈ Aut(A2). This is indeed an equivalence relation on the set Bir(A2), but keep in
mind that the conditions f ∼ f ′ and g ∼ g′ do not imply that g ◦ f ∼ g′ ◦ f ′.

We write [f ] for the equivalence class of an element f of Bir(A2).
Let f ∈ Bir(A2). Recall from 2.11 that f has finitely many contracting curves and

missing curves. Let c(f) (resp. q(f)) be the number of contracting (resp. missing)
curves of f . Clearly, if f ∼ g then c(f) = c(g) and q(f) = q(g). By [Dai91a, 4.3(a)],
c(f) = q(f) for every f ∈ Bir(A2).

Consider the map f 7→ n(f), from Bir(A2) to N, defined in [Dai91a, 1.2(a)] or
[CND14b, 2.3]. Then [Dai91a, 2.12] shows that

(22) n : Bir(A2)→ (N,+) is a homomorphism of monoids

and it is pointed out in [CND14b, 2.6(b)] that

(23) Aut(A2) =
{
f ∈ Bir(A2) | n(f) = 0

}
.

Statements (22) and (23) immediately imply that each non-invertible element of Bir(A2)
is a composition of irreducible elements, i.e.,

(24) the monoid Bir(A2) has factorizations into irreducibles.

Facts (22–24) were known in the time of [Dai91a] and [Dai91b], but were not stated
explicitly. Essentially nothing is known regarding uniqueness of factorizations.

In view of (24), it is natural to ask whether one can list all irreducible elements of
Bir(A2) up to equivalence. However, various examples and facts indicate that Bir(A2)
contains a great diversity of irreducible elements of arbitrarily high complexity, and
this suggests that the task of finding all of them may be hopeless. In this regard, let
us mention that [Dai91a, 4.12] implies in particular:{

n(f) | f is an irreducible element of Bir(A2)
}

= N \ {0}.
The results reviewed in Section 7 strengthen the impression that there are too many
irreducible elements to describe them. It therefore makes sense to turn our attention,
as we do in Section 8, to other types of questions regarding the structure of the monoid
Bir(A2).

7. Irreducible elements and generating sets

The results of this section show that question (∗), stated in the introduction to
Part II, has a “very negative” answer. The first three results are 4.1–4.3 of [CND14b].
The proof of the first one is based on Example 4.13 of [Dai91a], which constructs a
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family of irreducible elements of Bir(A2); the proof shows that that family already
contains |k| nonequivalent irreducible elements of Bir(A2). The vertical bars denote
cardinality (recall that k is algebraically closed, so |k| is an infinite cardinal).

7.1. Lemma ([CND14b, 4.1]).
∣∣{ [f ] | f is an irreducible element of Bir(A2)

}∣∣ = |k|.

In the next result, (i) ⇒ (ii) is clear and the converse easily follows from the fact
that the monoid Bir(A2) has factorizations into irreducibles.

7.2. Lemma ([CND14b, 4.2]). For any subset S of Bir(A2), the following are equivalent:

(i) Aut(A2) ∪ S is a generating set for the monoid Bir(A2);
(ii) for each irreducible f ∈ Bir(A2), [f ] ∩ S 6= ∅.

The next fact is an immediate consequence of 7.1 and 7.2:

7.3. Corollary ([CND14b, 4.3]). Let S be a subset of Bir(A2) such that Aut(A2) ∪ S
is a generating set for the monoid Bir(A2). Then |S| = |k|.

A question posed by Patrick Popescu-Pampu asks whether one can find a set S ⊂
Bir(A2) such that Aut(A2)∪ S generates Bir(A2) and the elements of S have bounded
degree. Result 7.5, below, gives a negative answer to that question. First, we define
what we mean by the degree of an element of Bir(A2). See the general introduction for
the notions of coordinate system of k[2] or A2, and for the degree(s) of an element of
k[2]. Let C denote the set of coordinate systems of A2.

7.4. Definition. Let f ∈ Bir(A2).

(a) Let γ = (X, Y ) ∈ C. Using γ to identify A2 with k2, we can consider that
f : A2 → A2 is given by f(x, y) = (u(x, y), v(x, y)) for some unique polynomials
u, v ∈ k[X, Y ]. We define degγ f = max(degγ u, degγ v).

(b) Define deg f = min
{

degγ f | γ ∈ C
}

and

deg f = min
{

deg g | g ∈ [f ]
}

= min
{

degγ g | g ∈ [f ] and γ ∈ C
}
.

Note that 1 ≤ deg f ≤ deg f ≤ degγ f ∈ N, for every f ∈ Bir(A2) and γ ∈ C.

7.5. Corollary. Let S be a subset of Bir(A2) such that Aut(A2)∪S is a generating set
for the monoid Bir(A2). Then

{
deg f | f ∈ S

}
is not bounded.

Remark. This is a slight improvement of Corollary 4.5 of [CND14b], which states that{
deg f | f ∈ S

}
is not bounded. The following proof is a small modification of that

of [CND14b, 4.5], and inequality (25) slightly improves [CND14b, 4.4].

Proof of 7.5. Remark 4.4 of [CND14b] shows that deg g ≥ (c(g) + 2)/2 for every
g ∈ Bir(A2), where c(g) is the number of contracting curves of g. Given f ∈ Bir(A2),
we may choose g ∈ [f ] such that deg f = deg g; since c(g) = c(f), it follows that
deg f = deg g ≥ (c(g) + 2)/2 = (c(f) + 2)/2. We showed:

(25) deg f ≥ c(f) + 2

2
for every f ∈ Bir(A2).
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Now let S be as in the statement, and let n ∈ N. By [Dai91a, 4.13], there exists
an irreducible element g ∈ Bir(A2) satisfying c(g) ≥ 2n. By 7.2, there exists f ∈ S
satisfying f ∼ g; then c(f) = c(g) ≥ 2n, so deg f > n by (25). �

8. Some properties of A in Bir(A2)

Let C denote the set of coordinate systems of A2.
Let γ ∈ C, use γ to identify A2 with k2, and define an element cγ ∈ Bir(A2) by

cγ(x, y) = (x, xy). Then the equivalence class [cγ] is independent of the choice of γ;
the elements of [cγ] are called simple affine contractions (SAC).

By (22) and (23), all elements of
{
f ∈ Bir(A2) | n(f) = 1

}
are irreducible. Now

[Dai91a, 4.10] implies:

(26)
{
f ∈ Bir(A2) | n(f) = 1

}
is the set of simple affine contractions.

So SACs are irreducible and, in fact, SACs are the simplest irreducible elements and
the simplest non-invertible elements of Bir(A2).

Let A be the submonoid of Bir(A2) generated by automorphisms and simple affine
contractions. Equivalently, given any γ ∈ C, we may describe A by:

A = the submonoid of Bir(A2) generated by Aut(A2) ∪ {cγ}.
One has A 6= Bir(A2) by 7.3, or because question (∗) (in the introduction of Part II)
has a negative answer.

8.1. Definition. Let M0 be a submonoid of a monoid M. We say that M0 is factorially
closed in M if the conditions x, y ∈M and xy ∈M0 imply that x, y ∈M0.

For instance, note the following trivial fact:

8.2. Lemma. Let M be a monoid and δ : M → (N,+) a homomorphism of monoids.
Then

{
x ∈M | δ(x) = 0

}
is factorially closed in M.

By (22), (23) and 8.2, we see that Aut(A2) is factorially closed in Bir(A2). However,
the following question turns out to be much more difficult:

(∗∗) Is A factorially closed in Bir(A2)?

There are several reasons why (∗∗) is a natural question, for instance its relation with
the open question of uniqueness of factorizations in Bir(A2):

8.3. Lemma. Suppose that Bir(A2) has the following property:

(27) For any irreducible elements f1, . . . , fr, g1, . . . , gs of Bir(A2) satisfying
f1 ◦ · · · ◦ fr = g1 ◦ · · · ◦ gs, we have r = s.

Then A is factorially closed in Bir(A2).

Proof. Suppose that (27) is true. Then we may define a homomorphism of monoids,
` : Bir(A2)→ (N,+), by stipulating that if f1, . . . , fr are irreducible elements of Bir(A2)
then `(f1 ◦ · · · ◦ fr) = r, and `(f) = 0 for all f ∈ Aut(A2). Define δ(f) = n(f)− `(f)
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for f ∈ Bir(A2); then (23) implies that δ(f) = n(f) − 1 ≥ 0 for each irreducible
f ∈ Bir(A2), and that δ(f) = 0 for each f ∈ Aut(A2); thus

δ : Bir(A2)→ (N,+) is a homomorphism of monoids.

We have
{
f ∈ Bir(A2) | n(f) ≤ 1

}
⊆ A ⊆

{
f ∈ Bir(A2) | δ(f) = 0

}
by (23) and

(26). If f ∈ Bir(A2) satisfies δ(f) = 0 then either f ∈ Aut(A2) or f = f1 ◦ · · · ◦ fr for
some irreducible elements f1, . . . , fr of Bir(A2); in the first case it is clear that f ∈ A,
and in the second case we have (for each i) 0 = δ(fi) = n(fi)− 1, so fi ∈ A; so f ∈ A

in both cases, showing that A =
{
f ∈ Bir(A2) | δ(f) = 0

}
. The desired conclusion

follows from 8.2. �

Because we don’t know whether Bir(A2) has property (27), it is interesting to see
that A is indeed factorially closed in Bir(A2):

8.4. Theorem ([CND14b, 4.8]). If f, g ∈ Bir(A2) satisfy g ◦ f ∈ A, then f, g ∈ A.

We want to mention another result of [CND14b] related to A. It is customary
to define families of elements of Bir(A2) by requiring that their missing curves (or
sometimes their contracting curves) satisfy some condition or other. For instance, the
introduction of Section 3 of [CND14b] defines three subsets Sw ⊃ Sa ⊃ Saa of Bir(A2)
by that method. Let us consider in particular Sw, which is defined to be the set of
f ∈ Bir(A2) satisfying:

there exists a coordinate system of A2 with respect to which all missing
curves of f have degree 1.

Note that Aut(A2) ∪
{
cγ | γ ∈ C

}
⊆ Sw.

8.5. Example. Choose a coordinate system of A2 and use it to identify A2 with k2.
Define c, θ, f : A2 → A2 by c(x, y) = (x, xy), θ(x, y) = (x+ y2 − 1, y) and f = c ◦ θ ◦ c.
As c ∈

{
cγ | γ ∈ C

}
and θ ∈ Aut(A2), we have c, θ ∈ A and hence f ∈ A. The

singular curve y2 = x2 + x3 is a missing curve of f , so f /∈ Sw and hence A * Sw. As
c, θ ∈ Sw, this also shows that Sw is not closed under composition of morphisms.

Remark. Russell constructed an example (which appeared later in [Dai91a, 4.7]) of an
element f of Bir(A2) with three missing curves C1, C2, C3, where (with respect to a
suitable coordinate system of A2) C1 and C2 are the lines x+ y = 0 and x− y = 0, and
C3 is the parabola y = x2. Note that for each i ∈ {1, 2, 3}, there exists a coordinate
system of A2 with respect to which Ci has degree 1. However, since C1∩C3 consists of
two points, no coordinate system γ of A2 has the property that degγ C1 = degγ C2 =
degγ C3 = 1. So f /∈ Sw. This shows that, in order for f to belong to Sw, it is not
enough that each individual missing curve be isomorphic to a line; the correct condition
is that the missing curves be “simultaneously rectifiable”.

As a consequence of Theorem 3.15 of [CND14b], one has:

8.6. Corollary. The set Sw is included in A.
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Note that Theorem 3.15 of [CND14b] gives a complete description of the three sub-
sets Sw ⊃ Sa ⊃ Saa of A, and that it does so by describing which compositions of
automorphisms and simple affine contractions give elements of each of these sets.
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