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Abstract

This paper gives a method of constructing affine fibrations for polynomial rings. The method
can be used to construct the examples of A2-fibrations in dimension 4 due to Bhatwadekar and
Dutta (1994) and Vénéreau (2001). The theory also provides an elegant way to prove many of
the known results for these examples.

1 Introduction

One version of the famous Dolgachev-Weisfeiler Conjecture asserts that, if ϕ : An → Am is a flat
morphism of affine spaces in which every fiber is isomorphic to An−m, then it is a trivial fibration
[6]. In his 2001 thesis, Vénéreau constructed a family of fibrations ϕn : C4 → C2 (n ≥ 1) whose
status relative to the Dolgachev-Weisfeiler Conjecture could not be determined. These examples
attracted wide interest in the intervening years, and have been investigated in several papers, for
example, [8, 10, 11, 13]. A less well-known example of an affine fibration, due to Bhatwadekar and
Dutta, appeared in 1992 [5], and it turns out that this older example is quite similar to the fibration
ϕ1 of Vénéreau. Bhatwadekar and Dutta asked if their fibration is trivial, a question which remains
open.

In this paper, we prove the following result, which is a tool for building affine fibrations. Here,
it should be noted that statements (ii)-(iv) follow by combining (i) with known results.

Proposition 1.1 Let k be a field, and let B = k[x, y1, . . . , yr, z1, . . . , zm] = k[r+m+1] . Suppose that
v1, . . . , vm ∈ B are such that

k[x, y1, . . . , yr, v1, . . . , vm]x = Bx.

Pick any φ1, . . . , φr ∈ k[x, v1, . . . , vm], and define fi = yi + xφi (1 ≤ i ≤ r) and A = k[x, f1, ..., fr].
Then:

(i) B is an Am-fibration over A.

(ii) B is a stably polynomial algebra over A, i.e., B[n] = A[m+n] for some n ∈ N.

If moreover m = 2 and char(k) = 0:

(iii) ker D = A[1] = k[r+2] for every non-zero D ∈ LNDA(B).

(iv) If I is an ideal of A such that A/I is a PID, then B/IB = (A/I)[2].

As a consequence, we obtain a family of A2-fibrations in dimension 4 to which the examples of
Vénéreau and Bhatwadekar-Dutta belong. In addition, many of the known results about these
examples follow from the more general theory, for example, that the fibrations are stably trivial.

An excellent summary of known results for affine fibrations is found in [5], and the reader is
referred to this article for further background.

∗Research of the first author supported by a grant from NSERC Canada.
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2 Preliminaries

2.1 Notation and Definitions

Throughout, k denotes a field, and rings are assumed to be commutative. For any field F , affine
n-space over F is denoted by An

F , or simply An when the ground field is understood. For a ring A
and positive integer n, A[n] is the polynomial ring in n variables over A. If B is a domain, and A is
a subring of B, then tr.degA(B) denotes the transcendence degree of the field frac(B) over frac(A).
If x ∈ A is non-zero, then Ax is the localization of A at the set {xn|n ∈ N}. Likewise, if p is a prime
ideal of A, then Ap is the localization of A determined by p, and κ(p) denotes the field Ap/pAp.
Here is the definition of the main object under consideration (following [5]).

Definition. Let B be an algebra over a ring A. Then B is an Am-fibration over A if
and only if B is finitely generated as an A-algebra, flat as an A-module, and for every
p ∈ Spec A, κ(p) ⊗A B ∼= κ(p)[m].

Geometrically, in this case if X = Spec B, Y = Spec A, and ϕ : X → Y is the morphism induced by
the inclusion A → B, then ϕ will be called an Am-fibration of X over Y . For convenience, we also
introduce the following terminology.

Definition. The ring B is an Am-prefibration over the subring A if and only if for every
p ∈ Spec A, κ(p) ⊗A B ∼= κ(p)[m].

Note that if B is an Am-fibration over A then B is faithfully flat over A (by flatness and surjectivity of
Spec B → Spec A) so the homomorphism A → B is injective. Thus, every fibration is a prefibration.
The converse is valid in certain situations, for instance we observe:

Lemma 2.1 Let A ⊂ B be polynomial rings over a field. If B is an Am-prefibration over A, then
it is an Am-fibration over A.

Proof. We have A = k[n] and B = k[n+m] for some field k and some n ∈ N.
If k is algebraically closed then Spec B → Spec A is a morphism of nonsingular algebraic varieties

such that every fiber has dimension equal to dimB − dimA, so B is flat over A and B is an Am-
fibration over A.

For the general case, let k̄ be the algebraic closure of k, Ā = k̄ ⊗k A = k̄[n] and B̄ = k̄ ⊗k B =
k̄[n+m]. One can see that B̄ is an Am-prefibration over Ā; by the first paragraph, it follows that B̄
is an Am-fibration over Ā so in particular B̄ is faithfully flat over Ā.

k̄ → Ā → B̄
↑ ↑ ↑
k → A → B

It follows that B̄ is faithfully flat over B and also over A; consequently B is faithfully flat over A
(descent property). Thus B is an Am-fibration over A. 2

Suppose B is an affine fibration over A (i.e., B is an Am-fibration for some non-negative integer
m). This fibration is said to be trivial if B = A[m], i.e., B is a polynomial algebra over A. Likewise,
the fibration is stably trivial if B[n] = A[m+n] for some n ≥ 0, and we say that B is a stably
polynomial algebra over A.

For i = 1, 2, suppose Bi is an affine fibration over Ai, with inclusion map ji : Ai → Bi. These
two fibrations are said to be equivalent if there exist isomorphisms α : A1 → A2 and β : B1 → B2

such that βj1 = j2α.

2.2 Some Known Results on Affine Fibrations

This section lays out certain known results on affine fibrations which are needed in the rest of the
paper. The module of Kähler differentials of B over A is denoted by ΩB/A.
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Theorem 2.1 (Asanuma, [2], Thm. 3.4) Let A be a noetherian ring and B an Am-fibration over
A. Then ΩB/A is a projective B-module of rank m, and there exists n ≥ 0 such that A ⊂ B ⊂ A[n].
If ΩB/A is a free B-module, then B[n] = A[m+n].

In view of the Quillen-Suslin Theorem, there follows:

Corollary 2.1 Consider A ⊂ B where A is a noetherian ring and B is a polynomial ring over a
field. If B is an Am-fibration over A, then B[n] = A[m+n] for some n ≥ 0.

It was proved by Hamann [9] that if A is a noetherian ring containing Q then the conditions A ⊂ B
and B[n] = A[n+1] imply B = A[1]. Combining this with the above result of Asanuma gives:

Theorem 2.2 ([5], Thm. 3.4) Let A be a noetherian ring containing a field of characteristic zero,
and let B be an A1-fibration over A. If ΩB/A is a free B-module, then B = A[1].

From the results of Sathaye [16] and Bass, Connell, and Wright [4], one derives:

Theorem 2.3 ([5], Cor. 4.8) Let A be a PID containing a field of characteristic zero. If B is an
A2-fibration over A, then B = A[2].

Corollary 2.2 Suppose that B is an A2-fibration over a ring A which contains Q. If I is an ideal
of A such that A/I is a PID, then B/IB = (A/I)[2].

Proof. As B/IB = A/I ⊗A B, the ring homomorphism A/I → B/IB makes B/IB an A2-fibration
over A/I, so the desired conclusion follows from Theorem 2.3. 2

There are many other papers which discuss affine fibrations. For example, results concerning
morphisms with A1-fibers are due to Kambayashi and Miyanishi [14], and to Kambayashi and Wright
[15]. Likewise, Asanuma and Bhatwadekar [3], and Kaliman and Zaidenberg [12] give important facts
about A2-fibrations. For an overview of affine fibrations, the reader is referred to the aforementioned
survey article [5].

For affine spaces, the first case where few results are known is the case of A2-fibrations A4 → A2,
and consequently these will receive special attention.

2.3 Locally Nilpotent Derivations

By a locally nilpotent derivation of a commutative ring B of characteristic 0, we mean a derivation
D : B → B such that, to each b ∈ B, there is a positive integer n with Dnb = 0. The kernel of D
is denoted ker D. Let D : B → B be a non-zero locally nilpotent derivation, where B is an integral
domain of characteristic zero. If K = ker D, then it is known that K is factorially closed in B,
B∗ ⊂ K, and tr.degKB = 1. An element s ∈ B is a slice for D if Ds = 1, and in this case B = K[s].
The notation LND(B) denotes the set of all locally nilpotent derivations of B. Likewise, if A is a
subring of B, then LNDA(B) denotes the set of locally nilpotent derivations D of B with D(A) = 0.
If D ∈ LND(B), then exp D is an automorphism of B. A reference for locally nilpotent derivations
is [7].

An important fact about locally nilpotent derivations which we need is the following.

Proposition 2.1 Let B be a UFD of characteristic zero, and let A ⊂ B be a subring such that
B[n] = A[n+2] for some n ≥ 0. Then ker D = A[1] for every non-zero D ∈ LNDA(B).

Proof. From B[n] = A[n+2], it follows that A is a UFD and that tr.degA(B) = 2.
Let D ∈ LNDA(B) be given, D 6= 0. As ker D is factorially closed in B, it is a UFD. We also

have tr.degker D(B) = 1, so
A ⊂ ker D ⊂ A[n+2]

where A and ker D are UFDs and tr.degA(ker D) = 1. It now follows from a classical result of
Abhyankar, Eakin, and Heinzer that ker D = A[1] ([1], Thm. 4.1). 2

By Prop. 2.1 and Cor. 2.1, we obtain:
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Corollary 2.3 Let A and B be polynomial rings over a field k of characteristic 0 such that A ⊂ B,
and B is an A2-fibration over A. Then:

(i) ker D = A[1] for every non-zero D ∈ LNDA(B).

(ii) B = A[2] if and only if there exists D ∈ LNDA(B) with a slice.

Remark 2.1 The corollary above is of interest since when B is a polynomial ring, the kernel of D
is not a polynomial ring for most D ∈ LND(B). So the fact that ker D = A[1] = k[d−1], d = dimk B,
for all non-zero D ∈ LNDA(B) when A is a polynomial ring means that these subrings are quite
special.

3 A Criterion for Affine Fibrations

Lemma 3.1 Consider a triple (S, B, x) and an m ∈ N satisfying:

(i) B is a domain, S is a subring of B, and x ∈ B is transcendental over S;

(ii) S ∩ xB = 0;

(iii) Bx is an Am-prefibration over Ax, where A = S[x];

(iv) B̄ is an Am-prefibration over Ā, where B̄ = B/xB, and Ā ⊆ B̄ is the image of A via the
canonical epimorphism B → B̄.

Then B is an Am-prefibration over A.

Proof. Let p ∈ Spec A and consider the fiber of f : Spec B → Spec A over p.
If x 6∈ p, let q = pAx ∈ Spec(Ax). Then the fiber of f over p is the same thing as that of

Spec(Bx) → Spec(Ax) over q, and by (iii) this is Am
κ(q) (= Am

κ(p)).
If x ∈ p, let q = pĀ ∈ Spec Ā. As (ii) implies A∩xB = xA, we may identify A/xA → B/xB = B̄

with Ā → B̄ and consequently the fiber of f over p is the same thing as that of Spec B̄ → Spec Ā
over q, which is Am

κ(q) (= Am
κ(p)) by (iv). 2

Remark 3.1 If Bx = A
[m]
x and B̄ = Ā[m] then conditions (iii) and (iv) are satisfied.

Proof of Prop. 1.1. Let S = k[f1, . . . , fr] and note that A = S[x] = S[1]. We have S ∩ xB = 0
and

Bx = Ax[v1, . . . , vm] = A[m]
x and B̄ = Ā[z1, . . . , zm] = Ā[m] ,

so (S, B, x) satisfies the hypothesis of Lemma 3.1. Consequently B is an Am-prefibration over A.
As A, B are polynomial rings over a field, Lemma 2.1 implies that B is an Am-fibration over A. This
proves (i).

Part (ii) follows from Cor. 2.1; part (iii) follows from Cor. 2.3; and part (iv) follows from Cor. 2.2.
2

Remark 3.2 The example of Vénéreau (details of which are discussed below) uses a subring A =
C[x, f ] ⊂ B = C[x, y, z, u] = C[4] of the form hypothesized in the proposition. Vénéreau proved that
for every γ(x) ∈ C[x], B/(f − γ(x)) = C[x][2]. Item (iv) in the proposition is thus a generalization
of Vénéreau’s result.

Construction of Examples. As above, let B = k[x, y1, . . . , yr , z1, . . . , zm] = k[r+m+1] . In addi-
tion, let R = k[x, y1, . . . , yr ]. Here are two ways to choose v1, . . . , vm ∈ B satisfying

R[v1, ..., vm]x = Bx .
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1. Let M be an m × m matrix with entries in R such that det M = xn for some non-negative
integer n. In particular, M ∈ GLm(Rx). Define v1, ..., vm ∈ B by




v1
...

vm


 = M




z1
...

zm


 .

Then Bx = Rx[z1, ..., zm] = Rx[v1, ..., vm].

2. For this construction, we need to assume that k has characteristic 0. Choose D ∈ LNDR(Bx)
and consider the Rx-automorphism exp(D) : Bx → Bx, which we abbreviate α : Bx → Bx. Choose
i1, . . . , im ∈ Z such that α(xijzj) ∈ B for all j = 1, . . . , m and define

vj = α(xijzj) (1 ≤ j ≤ m).

Then
Bx = R[xi1z1, . . . , x

imzm]x = R[α(xi1z1), . . . , α(ximzm)]x = R[v1, . . . , vm]x .

4 Dimension Four

In this section, assume k is any field of characteristic zero. We consider a family of A2-fibrations
A4 → A2 which includes the examples of Bhatwdekar-Dutta and Vénéreau .

Let B = k[x, y, z, u] be a polynomial ring in four variables. We consider the set of polynomials in
B of the form p = yu+λ(x, z), where λ = z2+r(x)z+s(x) for some r, s ∈ k[x]. Given p = yu+λ(x, z)
of this form, define θ ∈ LND(Bx) by θx = θy = 0, θz = x−1y, and θu = −x−1λz noting that θp = 0.
Set

v = exp(pθ)(xz) = xz + yp and w = exp(pθ)(x2u) = x2u − xpλz − yp2 .

In addition, given n ≥ 1, define fn ∈ B by fn = y + xnv. Note that fn, v, w ∈ B, and these depend
on our choice of p. Let ϕn(p) : A4 → A2 denote the morphism defined by the inclusion k[x, fn] ⊂ B.
It is easy to see that the hypothesis of Prop. 1.1 is satisfied (with r = 1, m = 2), so ϕn(p) is an
A2-fibration over A2 and more precisely:

Corollary 4.1 For any choice of p and n as above, if A = k[x, fn] then:

(i) B is an A2-fibration over A.

(ii) B[s] = A[s+2] for some s ∈ N.

(iii) ker D = A[1] = k[3] for every non-zero D ∈ LNDA(B).

(iv) If a ∈ A is such that A/aA = k[1], then B/aB = (A/aA)[2] = k[3].

In addition:

Lemma 4.1 ϕn(p) is trivial for each n ≥ 3.

Proof. Assume n ≥ 3, and define the derivation d of B by

d =
∂(x, ·, v, w)
∂(x, y, z, u)

.

Since k(x)[y, v, w] = k(x)[y, z, u], it follows that d is locally nilpotent. And since dx = dv = 0,
we have that xn−3vd is also locally nilpotent. In addition, we have by direct calculation that
dy = vzwu − vuwz = x3. Therefore, if β = exp(xn−3vd), then β is an automorphism of B for which
β(x) = x and β(y) = y + xn−3vd(y) = y + xnv = fn. Therefore, B = k[x, fn][2] when n ≥ 3. 2
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Example 1: p = yu + z2 + z. This choice of p yields the 1992 example of Bhatwadekar and Dutta
[5] (Example 4.13). In particular, the authors work over a DVR (R, π) containing Q, and they define
F ∈ R[X, Y, Z] = R[3] by

F = (πY 2)Z + Y + πY (X + X2) + π2X .

By the substitutions
π → x , X → z , Y → y , Z → u

we see that F becomes exactly the polynomial f1 for this p, namely,

f1 = y + x(xz + y(yu + z2 + z)) .

The authors also list rational co-generators G and H, which under these substitutions become G → v
and H → w. Here, R should be viewed as the localization of k[x] at the prime ideal defined by
x. The authors ask (Question 4.14) if R[X, Y, Z] = R[F ][2], and this is equivalent to the question
whether ϕ1(p) is trivial. This question is still open.

Example 2: p = yu + z2. This choice of p yields the 2001 examples of Vénéreau [17]. The
polynomials fn defined using p = yu + z2 are called the Vénéreau polynomials. Vénéreau showed
that ϕn(p) is trivial for n ≥ 3, which is equivalent to the condition B = k[x, fn][2]. Later, the
second author showed that ϕn(p) is stably trivial for all n ≥ 1 [8]. It remains an open question
whether ϕ1(p) or ϕ2(p) is trivial. However, Vénéreau proved for all γ(x) ∈ k[x] that the quotient
B/(f1−γ(x)) is x-isomorphic to k[x][2]. In particular, f1 defines a hyperplane in A4, but the question
as to whether f1 (or f2) is a variable of B remains open.

Question 1. Are the fibrations ϕ1(p) : A4 → A2 equivalent for p = yu + z2 and p = yu + z2 + z ?

5 A Remark on Stable Variables

Let B = k[n] for a field k. If f ∈ B is a variable of B[q] , where q ∈ N, we say that f is a q-stable
variable of B (or simply a stable variable of B). It is not known whether every stable variable is a
variable.

Example 3. Let f ∈ B = k[n], where k is of characteristic zero. By Prop. 3.20 of [7], if there
exists D ∈ LND(B) such that D(f) = 1 then f is a 1-stable variable of B. Using this fact, one can
show that if every 1-stable variable is a variable then the Cancellation Problem for affine spaces has
an affirmative answer.

Example 4. Consider the situation of Example 2 : Let B = k[x, y, z, u] = k[4], p = yu + z2 and
n ∈ {1, 2}. Define fn ∈ B as in Section 4 (Vénéreau polynomials) and let An = k[x, fn]. By Cor. 4.1
we have B[q] = A

[q+2]
n for some q, but in fact the second author showed in [8] that B[1] = A

[3]
n . It

follows in particular that fn is a variable of B[1] = k[5], i.e., fn is a 1-stable variable of B. It is not
known whether fn is a variable of B, or whether there exists D ∈ LND(B) satisfying D(fn) = 1.

We now explain how stable variables can be used to construct rings which are of interest in
relation to the Cancellation Problem.

We begin with a general observation. Let k be a field and suppose that R ⊂ S are k-algebras
satisfying S[q] = R[q+m] . If R → R′ is any k-homomorphism and if we define S′ = R′ ⊗R S, then
S′[q] = R′[q+m] ; so in the case where R′ = k[r], we have S′ [q] = k[q+m+r] and hence S′ is a potential
counterexample to the Cancellation Problem.

Now suppose that f is a q-stable variable of B = k[n] and let R = k[f ]. As B[q] = R[n+q−1],
it follows that if R → R′ is any k-homomorphism such that R′ = k[r] for some r, then the algebra
B′ = R′ ⊗R B satisfies B′ [q] = k[n+q+r−1].
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For instance let d ≥ 2 be an integer, W an indeterminate, R′ = k[W ] = k[1] and let R → R′

be the k-homomorphism which maps f to W d. This gives R′ ⊗R B = B
[

d
√

f
]
, so we obtain the

following observation.

For a field k, suppose that f is a q-stable variable of B = k[n] and define Bd = B
[

d
√

f
]
.

Then B
[q]
d = k[n+q] for every positive integer d.

In particular let fn ∈ B = k[4] be as in Example 2 and let Bd = B
[

d
√

fn

]
(with n ∈ {1, 2} and d ≥ 2);

then B
[1]
d = k[5] but we don’t know whether Bd is k[4].
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