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WITH TRIVIAL MAKAR-LIMANOV INVARIANT

DANIEL DAIGLE

Abstract. We study the class of 2-dimensional affine k-domains R satisfying ML(R) =

k, where k is an arbitrary field of characteristic zero. In particular, we obtain the

following result: Let R be a localization of a polynomial ring in finitely many vari-

ables over a field of characteristic zero. If ML(R) = K for some field K ⊂ R such

that trdeg
K

R = 2, then R is K-isomorphic to K[X, Y, Z]/(XY − P (Z)) for some

nonconstant P (Z) ∈ K[Z].

1. Introduction

Let us recall the definition of the Makar-Limanov invariant:

1.1. Definition. If R is a ring of characteristic zero, a derivation D : R → R is said
to be locally nilpotent if for each r ∈ R there exists n ∈ N (depending on r) such that

Dn(r) = 0. We use the following notations:

lnd(R) = set of locally nilpotent derivations D : R→ R

klnd(R) =
{

kerD | D ∈ lnd(R) and D 6= 0
}

ML(R) =
⋂

D∈lnd(R)

ker(D).

We are interested in the class of 2-dimensional affine k-domainsR satisfying ML(R) =
k, where k is a field of characteristic zero. The corresponding class of affine algebraic
surfaces was studied by several authors ([1], [2], [7], [8], [9], [14], [17], in particular),
but almost always under the assumption that k is algebraically closed, or even k = C.
In this paper we obtain some partial results valid when k is an arbitrary field of char-
acteristic zero. We are particularly interested in the following subclass:

1.2. Definition. Given a field k of characteristic zero, let D(k) be the class of k-
algebras isomorphic to k[X, Y, Z]/(XY − ϕ(Z)) for some nonconstant polynomial in

one variable ϕ(Z) ∈ k[Z] \ k, where X, Y, Z are indeterminates over k.

The class D(k) was studied in [4], [5] and [16], in particular. It is well-known that
if R ∈ D(k) then R is a 2-dimensional normal affine domain satisfying ML(R) = k. It
is also known that the converse is not true, which raises the following:
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Question. Suppose that R is a 2-dimensional affine k-domain with ML(R) = k. Under

what additional assumptions can we infer that R ∈ D(k)?

Section 3 completely answers this question in the case where R is a smooth k-algebra.
This is achieved by reducing to the case k = C, which was solved by Bandman and
Makar-Limanov. This reduction is non-trivial, and makes essential use of the main
result of Section 2. Also note Corollary 3.8, which gives a pleasant answer to the above
question in the factorial case. Then we derive several consequences from Section 3, for
instance consider the following special case of Theorem 4.1:

Let R be a localization of a polynomial ring in finitely many variables

over a field of characteristic zero. If ML(R) = K for some field K ⊂ R
such that trdegK R = 2, then R ∈ D(K).

In turn, this has consequences in the study of Ga-actions on Cn.

Conventions. All rings and algebras are commutative, associative and unital. If A is
a ring, we write A∗ for the units of A; if A is a domain, FracA is its field of fractions. If
A ⊆ B are rings, “B = A[n] ” means that B is A-isomorphic to the polynomial algebra

in n variables over A. If L/K is a field extension, “L = K (n) ” means that L is a purely
transcendental extension of K and trdegK L = n (transcendence degree).

In [5], one defines a Danielewski surface to be a pair (R,k) such that R ∈ D(k).
In the present paper we avoid using the term “Danielewski surface” in that sense,
because it is incompatible with accepted usage. The reader should keep this in mind
when consulting [5] (our main reference for Section 2).

2. Base extension

Let k be a field of characteristic zero. It is clear that ifR ∈ D(k) thenK⊗kR ∈ D(K)
for every field extension K/k. However, if K ⊗k R ∈ D(K) for some K, it does not
follow that R ∈ D(k) (see Example 2.2, below).

2.1. Remark. If R ∈ D(k) then SpecR has infinitely many k-rational points. (Indeed,
if R = k[X, Y, Z]/(XY − ϕ(Z)) then there is a bijection between the set of k-rational

points of SpecR and the zero-set in k3 of the polynomial XY − ϕ(Z).)

2.2. Example. Let A = R[X, Y, Z]/(f), where f = X2 + Y 2 + Z2. Viewing f as
an element of C[X, Y, Z] we have f = (X + iY )(X − iY ) + Z2 (where i2 = −1), so
C ⊗R A ∼= C[U, V,W ]/(UV + W 2) ∈ D(C). As SpecA has only one R-rational point,

A /∈ D(R) by Remark 2.1. Thus

A /∈ D(R) and C ⊗R A ∈ D(C).

Note1 that Theorem 2.3 (below) implies that ML(A) = A. Moreover, if we define
A′ = R[U, V,W ]/(UV +W 2) ∈ D(R) then A 6∼= A′ but C ⊗R A ∼= C ⊗R A

′.

2.3. Theorem. For an algebra R over a field k of characteristic zero, the following

conditions are equivalent:

1A different proof that ML(A) = A is given in [13, 9.21].
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(a) R ∈ D(k)
(b) ML(R) 6= R and there exists a field extension K/k such that K ⊗k R ∈ D(K).

We shall prove this after some preparation.

2.4. Some facts. Refer to [11] or [13] for background on locally nilpotent deriva-

tions. Statement (c) is due to Rentschler [20] and (d) to Nouazé and Gabriel [19] and
Wright [21].

(a) If A ∈ klnd(B) where B is a domain of characteristic zero then A is factorially

closed in B (i.e., if x, y ∈ B \ {0} and xy ∈ A then x, y ∈ A). It follows that

ML(B) is factorially closed in B. Any factorially closed subring A of B is in
particular algebraically closed in B (i.e., if x ∈ B is a root of a nonzero poly-
nomial with coefficients in A then x ∈ A) and satisfies A∗ = B∗ (in particular,

any field contained in B is contained in A).
(b) Let B be a noetherian domain of characteristic zero. If 0 6= D ∈ lnd(B) then

D = αD0 for some α ∈ ker(D) and D0 ∈ lnd(B) where D0 is irreducible (i.e.,

the only principal ideal of B which contains D0(B) is B).
(c) Let B = k[2] where k is a field of characteristic zero. If D ∈ lnd(B) is irre-

ducible then there exist X, Y such that B = k[X, Y ] and D = ∂/∂Y .
(d) Let B be a Q-algebra. If D ∈ lnd(B) and s ∈ B satisfy Ds ∈ B∗ then

B = A[s] = A[1] where A = kerD.

2.5. Lemma. Let k be a field of characteristic zero and R a k-algebra satisfying:

there exists a field extension k̄/k such that k̄ ⊗k R ∈ D(k̄).

Then R is a two-dimensional normal affine domain over k and R∗ = k∗.

Proof. This is rather simple but it will be convenient to refer to this proof later. Choose

a field extension k̄/k such that k̄ ⊗k R ∈ D(k̄) and let R̄ = k̄ ⊗k R. As R is a flat
k-module, the canonical homomorphism k ⊗k R → k̄ ⊗k R is injective, so we may

regard R as a subring of R̄. In particular, R is an integral domain and we have the
diagram:

k̄
� �

// R̄
� �

// S−1R̄
� �

// Frac R̄

k
� �

//

?�

OO

R
� �

//

?�

OO

FracR
?�

OO

where S = R \ {0}. Let B be a basis of k̄ over k such that 1 ∈ B. Note that B is also
a basis of the free R-module R̄ and of the vector space S−1R̄ over FracR. It follows:

(1) k̄ ∩R = k and R̄ ∩ FracR = R.

As R̄ ∈ D(k̄), [5, 2.3] implies that R̄∗ = k̄∗ and that R̄ is a normal domain; so (1)
implies that R∗ = k∗ and that R is a normal domain. Also:

(2) If E is a subset of R such that k̄[E] = R̄, then k[E] = R.
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Indeed, B is a basis of the R-module R̄ and a spanning set of the k[E]-module R̄; as
k[E] ⊆ R, it follows that k[E] = R.

Note that R is affine over k, by (2) and the fact that R̄ is affine over k̄. Let
n = dimR then, by Noether Normalization Lemma, there exists a subalgebra R0 = k[n]

of R over which R is integral. Then R̄ = k̄ ⊗k R is integral over k̄ ⊗k R0 = k̄[n], so
n = dim R̄ = 2. �

We borrow the following notation from [5, 2.1].

2.6. Definition. Given a k-algebra R, let Γk(R) denote the (possibly empty) set of
ordered triples (x1, x2, y) ∈ R× R× R satisfying:

The k-homomorphism k[X1, X2, Y ] → R defined by

X1 7→ x1, X2 7→ x2 and Y 7→ y

is surjective and has kernel equal to (X1X2−ϕ(Y ))k[X1, X2, Y ] for some

nonconstant polynomial in one variable ϕ(Y ) ∈ k[Y ].

Note that R ∈ D(k) if and only if Γk(R) 6= ∅.

Proof of Theorem 2.3. That R ∈ D(k) implies ML(R) = k is well-known (for instance

it follows from part (d) of [5, 2.3]), so it suffices to prove that (b) implies (a).
Suppose that R satisfies (b). Note that if K/k is a field extension satisfying K⊗kR ∈

D(K) then for any field extension L/K we have L⊗k R ∈ D(L). In particular, there

exists a field extension k̄/k such that k̄⊗kR ∈ D(k̄) and such that k̄ is an algebraically
closed field. We fix such a field k̄. The fact that k̄ is algebraically closed implies that

(3) the fixed field k̄G is equal to k

where G = Gal(k̄/k). We use the notation (R̄, B, etc) introduced in the proof of

Lemma 2.5. As ML(R) 6= R, there exists 0 6= D ∈ lnd(R). Let D̄ ∈ lnd(R̄) be the
unique extension of D, let A = kerD and Ā = ker D̄.

It follows from [5] that Ā = k̄[1] ([5, 2.3] shows that some element of klnd(R̄) is

a k̄[1] and, by [5, 2.7.2], Autk̄(R̄) acts transitively on klnd(R̄)). Applying the exact

functor k̄ ⊗k to the exact sequence 0 → A → R
D
−→ R of k-linear maps shows that

k̄ ⊗k A = Ā = k̄[1], so A = k[1]. Choose f ∈ R such that A = k[f ], then Ā = k̄[f ].

Consider the nonzero ideals I = A∩D(R) and Ī = Ā∩D̄(R̄) of A and Ā respectively.
Let ψ ∈ A and s ∈ R be such that I = ψA and D(s) = ψ. We claim that

(4) Ī = ψĀ.

Indeed, an arbitrary element of Ī is of the form D̄(σ) where σ ∈ R̄ and D̄2(σ) = 0.
Write σ =

∑

λ∈B
sλ λ with sλ ∈ R, then 0 = D̄2(σ) =

∑

λ∈B
D2(sλ)λ, so for all λ ∈ B

we have D2(sλ) = 0, hence D(sλ) ∈ I = ψA, and consequently D̄(σ) ∈ ψĀ, which
proves (4).

By 2.4(b), D̄ = α∆ for some α ∈ Ā\{0} and some irreducible ∆ ∈ lnd(R̄). Consider

the nonzero ideal I0 = Ā ∩ ∆(R̄) of Ā. We claim that

(5) I0 = ∆(s)Ā.
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To see this, consider an arbitrary element ∆(σ) of I0 (where σ ∈ R̄, ∆2(σ) = 0). Then
α∆(σ) = D̄(σ) ∈ Ī = ψĀ = D̄(s)Ā = α∆(s)Ā, so ∆(σ) ∈ ∆(s)Ā and (5) is proved.

Consider the case where ∆(s) ∈ R̄∗. Then R̄ = Ā[s] = k̄[f, s] by 2.4(d), so (2)
implies that R = k[f, s] = k[2], so in particular R ∈ D(k) and we are done.

From now-on assume that ∆(s) 6∈ R̄∗. By [5, 2.8], Ā = k̄[∆(y)] for some y ∈ R̄.
Note that ∆(y) ∈ I0, so (5) gives ∆(s) | ∆(y) in Ā. As ∆(y) is an irreducible element
of Ā (because k̄[∆(y)] = Ā = k̄[1]) and ∆(s) 6∈ Ā∗, we have k̄[∆(s)] = Ā = k̄[f ] and

consequently ∆(s) = µ(f − λ) for some µ ∈ k̄∗, λ ∈ k̄. We may as well replace ∆ by
µ−1∆, so

(6) ∆(s) = f − λ, for some λ ∈ k̄.

We claim:

(7)
{

c ∈ k̄ | R̄/(f − c)R̄ is not an integral domain
}

= {λ}.

Indeed, [5, 2.8] implies that there exists x2 ∈ R̄ such that (f − λ, x2, s) ∈ Γk̄(R̄). This

means (cf. 2.6) that the k̄-homomorphism π : k̄[X1, X2, Y ] → R̄ defined by X1 7→ f−λ,
X2 7→ x2, Y 7→ s, is surjective and has kernel (X1X2 − P (Y )) for some nonconstant

P (Y ) ∈ k̄[Y ] (where X1, X2, Y are indeterminates). By (5) and ∆(s) 6∈ R̄∗, we see
that there does not exist σ ∈ R̄ such that ∆(σ) = 1; as ∆ is irreducible, it follows from
2.4(c) that R̄ 6= k̄[2] and hence that degY P (Y ) > 1. Thus, for c ∈ k̄,

R̄/(f − c)R̄ ∼= k̄[X1, X2, Y ]/(X1 − (c− λ), X1X2 − P (Y ))

is a domain if and only if c 6= λ. This proves (7).

Let θ ∈ Gal(k̄/k). Then θ extends to some Θ ∈ AutR(R̄) and Θ determines a ring
isomorphism

R̄/(f − λ)R̄ ∼= R̄/Θ(f − λ)R̄ = R̄/(f − θ(λ))R̄.

So R̄/(f − θ(λ))R̄ is not a domain and it follows from (7) that θ(λ) = λ. As this holds

for every θ ∈ Gal(k̄/k), (3) implies that λ ∈ k. To summarize, if we define x1 = f − λ
then

x1, s ∈ R and there exists x2 ∈ R̄ such that (x1, x2, s) ∈ Γk̄(R̄).

We now show that x2 can be chosen in R. Consider the ideals J = k[s] ∩ x1R of k[s]
and J̄ = k̄[s] ∩ x1R̄ of k̄[s], and choose ϕ(Y ) ∈ k[Y ] such that J = ϕ(s)k[s]. Let

Φ(s) be any element of J̄ (where Φ(Y ) ∈ k̄[Y ]). Then Φ(s) = x1G for some G ∈ R̄.
As B is a basis of the R-module R̄ and also of the k[Y ]-module k̄[Y ], we may write

G =
∑

λ∈B
Gλλ (where Gλ ∈ R) and Φ =

∑

λ∈B
Φλλ (where Φλ ∈ k[Y ]). Then

∑

λ∈B
(x1Gλ)λ = Φ(s) =

∑

λ∈B
Φλ(s)λ, so for every λ ∈ B we have Φλ(s) = x1Gλ, i.e.,

Φλ(s) ∈ J = ϕ(s)k[s]. We obtain that Φ(s) ∈ ϕ(s)k̄[s], so:

J̄ = ϕ(s)k̄[s].

On the other hand, [5, 2.4] asserts that J̄ = x1x2k̄[s], so x1x2 = µϕ(s) for some µ ∈ k̄∗.

It is clear that if (x1, x2, s) belongs to Γk̄(R̄) then so does (x1, µ
−1x2, s); so there exists
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x2 ∈ R̄ such that (x1, x2, s) ∈ Γk̄(R̄) and x1x2 = ϕ(s). As x2 = ϕ(s)/x1 ∈ FracR, (1)
implies that x2 ∈ R. Thus

(x1, x2, s) ∈ Γk̄(R̄), where x1, x2, s ∈ R.

In particular we have R̄ = k̄[x1, x2, s], so (2) gives R = k[x1, x2, s]. As x1x2 = ϕ(s)
where ϕ(Y ) ∈ k[Y ] is nonconstant, it follows that (x1, x2, s) ∈ Γk(R) and hence that
R ∈ D(k). �

3. On a result of Bandman and Makar-Limanov

In this paper we adopt the following:

3.1. Definition. Let R be an affine algebra over a field k and let q = dimR. We say
that R is a complete intersection over k if R ∼= k[X1, . . . , Xp+q]/(f1, . . . , fp) for some

p ≥ 0 and some f1, . . . , fp ∈ k[X1, . . . , Xp+q].

We refer to [18, 28.D] for the definition of a smooth k-algebra and to [18, 26.C] for
the definition of the R-module ΩR/k (the module of differentials of R over k), where R
is a k-algebra.

3.2. Theorem. Let k be a field of characteristic zero and R a smooth affine k-domain

of dimension 2 such that ML(R) = k. Then the following are equivalent:

(a) R ∈ D(k)

(b) R is generated by 3 elements as a k-algebra

(c) R is a complete intersection over k

(d)
∧2 ΩR/k

∼= R.

We shall prove this by reducing to the case k = C, which was proved by Bandman
and Makar-Limanov in [1]. That reduction makes essential use of Theorem 2.3.

3.3. Remark. Let k be a field of characteristic zero. According to the definition of
“Danielewski surface over k” given in [10], one has the following situation:'

&

$

%&%
'$'

&

$

%

danml(k)
D(k)

sml(k)

where danml(k) is the class of Danielewski surfaces S over k satisfying ML(S) = k,

sml(k) is the larger class of smooth affine surfaces S over k satisfying ML(S) = k,
and D(k) is the class of surfaces corresponding to the already defined class D(k) of
k-algebras. Among other things, paper [10] classifies the elements of danml(k) and

characterizes those which belong to D(k). In contrast, Theorem 3.2 characterizes the
elements of sml(k) which belong to D(k).
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3.4. Remark. Let R be a q-dimensional smooth affine domain over a field k of charac-
teristic zero. Then X = SpecR is in particular an irreducible regular scheme of finite

type over the perfect field k; so, by [15, ex. 8.1(c), p. 187], the sheaf of differentials
ΩX/k is locally free of rank q; so the canonical sheaf ωX =

∧q ΩX/k is locally free

of rank 1, i.e., is an invertible sheaf on X. As ωX and the structure sheaf OX are
respectively the sheaves associated to the R-modules

∧q ΩR/k and R, the condition
∧q ΩR/k

∼= R is equivalent to ωX
∼= OX (one says that X has trivial canonical sheaf).

This is also equivalent to the canonical divisor of X being linearly equivalent to zero
(because Pic(X) ∼= Cl(X) by [15, 6.16 p. 145]).

3.5. Remark. Let A′ and B be algebras over a ring A and let B ′ = A′ ⊗A B. Then
ΩB′/A′

∼= B′ ⊗B ΩB/A (cf. [18, p. 186]) and, for any B-module M ,
∧n(B′ ⊗B M) ∼=

B′ ⊗B

∧nM for every n ([3], Chap. 3, § 7, No 5, Prop. 8). Consequently,
∧n ΩB′/A′

∼=
B′ ⊗B

∧n ΩB/A.

3.6. Lemma. Let R be an algebra over a field k. If R is a complete intersection over

k and a smooth k-algebra, then
∧q ΩR/k

∼= R where q = dimR.

This is the well-known fact that a smooth complete intersection has trivial canonical
sheaf, but we don’t know a suitable reference so we sketch a proof.

Proof of 3.6. Let R = k[X1, . . . , Xp+q]/(f1, . . . , fp) and let ϕij ∈ R be the image of
∂fj

∂Xi
. Because R is smooth over k, [18, 29.E] implies that the matrix (ϕij) satisfies:

(8) the p× p determinants of (ϕij) generate the unit ideal of R.

By [15, 8.4A, p. 173], there is an exact sequence Rp ϕ
−−→ Rp+q → ΩR/k → 0 of R-linear

maps where ϕ is the map corresponding to the matrix (ϕij). Now if R is a ring and

Rp ϕ
−−→ Rp+q → M → 0 is an exact sequence of R-linear maps such that ϕ satisfies

(8), then
∧q M ∼= R. �

3.7. Lemma. Let R be an integral domain containing a field k of characteristic zero.

If R is normal and ML(R) = k, then for any field extension K of k we have:

(a) K ⊗k R is an integral domain

(b) ML(K ⊗k R) = K.

Proof. As k = ML(R) is algebraically closed in R (2.4(a)) and R is normal, it follows
that k is algebraically closed in L = FracR. By [22, Cor. 2, p. 198], K ⊗k L is an

integral domain. As K is flat over k and R → L is injective, K ⊗k R → K ⊗k L is
injective and (a) is proved.

Let ξ ∈ ML(K ⊗k R). Consider a basis B of K over k; note that B is also a
basis of the free R-module R′ = K ⊗k R and write ξ =

∑

λ∈B
xλλ (where xλ ∈ R).

If D ∈ lnd(R) then D extends to an element D′ ∈ lnd(R′) and the equation 0 =

D′(ξ) =
∑

λ∈B
D(xλ)λ shows that D(xλ) = 0 for all λ ∈ B. As this holds for every

D ∈ lnd(R), we have xλ ∈ ML(R) = k for all λ, so ξ ∈ K. �
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Proof of Theorem 3.2. Implications (a) ⇒ (b) ⇒ (c) are trivial and (c) ⇒ (d) is
Lemma 3.6, so only (d) ⇒ (a) requires a proof. Assume for a moment that k = C and

suppose that R satisfies (d). Then Lemmas 4 and 5 of [1] imply that R ∈ D(C), so the
Theorem is valid in the case k = C.

Let k be a field of characteristic zero, consider a smooth affine k-domain R of di-
mension 2 such that ML(R) = k, and suppose that R satisfies (d).

We have R ∼= k[X1, . . . , Xn]/(f1, . . . , fm) for some m,n ≥ 0 and some f1, . . . , fm ∈

k[X1, . . . , Xn]. Also consider D1, D2 ∈ lnd(R) such that kerD1 ∩kerD2 = k. Each Di

can be lifted to a (not necessarely locally nilpotent) k-derivation δi of k[X1, . . . , Xn].
Let k0 be a subfield of k which is finitely generated over Q and which contains all

coefficients of the polynomials fi and δi(Xj). Define R0 = k0[X1, . . . , Xn]/(f1, . . . , fm)
and note that k⊗k0

R0
∼= R. As k0 → k is injective and R0 is flat over k0, k0⊗k0

R0 →

k ⊗k0
R0 is injective and we may regard R0 as a subring of R. In particular, R0 is a

domain (a 2-dimensional affine k0-domain). Also note that Di(R0) ⊆ R0 for i = 1, 2;
if di : R0 → R0 is the restriction of Di then d1, d2 ∈ lnd(R0) and ker d1 ∩ ker d2 =

k ∩ R0 = k0 (see (1) for the last equality), showing that ML(R0) = k0. As k0 is a
field and k → R is obtained from k0 → R0 by base extension, the fact that k → R is
smooth implies that k0 → R0 is smooth (cf. [18, 28.O]).

Consider the R-module M =
∧2 ΩR/k and the R0-module M0 =

∧2 ΩR0/k0
. Consider

an isomorphism of R-modules θ : R → M and let ω = θ(1). We have R ⊗R0
M0

∼= M

by 3.5, so there is a natural homomorphism M0 → R ⊗R0
M0

∼= M , x 7→ 1 ⊗ x; by
adjoining a finite subset of k to k0, we may arrange that there exists ω0 ∈ M0 such
that 1 ⊗ ω0 = ω. Consider the R0-linear map f : R0 → M0, f(a) = aω0. Note that

R = k⊗k0
R0 is faithfully flat as an R0-module and that applying the functor R⊗R0

to
f yields the isomorphism θ; so f is an isomorphism, so

∧2 ΩR0/k0

∼= R0. As R ∈ D(k)
would follow from R0 ∈ D(k0), the problem reduces to proving the case k = k0 of the

theorem. Now k0 is isomorphic to a subfield of C, so it suffices to prove the theorem
in the case k ⊆ C.

Assume that k ⊆ C. As R is smooth over k, the local ring Rp is regular for every

p ∈ SpecR (by [18, 28.E,F,K]) so in particular R is a normal domain. Then it follows
from 3.7 that R′ = C⊗kR is an integral domain and that ML(R′) = C. By [18, 28.G],

R′ is smooth over C. It is clear that dimR′ = 2 (for instance see the proof of 2.5) and
3.5 gives

∧2 ΩR′/C
∼= R′⊗R

∧2 ΩR/k
∼= R′⊗RR ∼= R′. As the Theorem is valid over C, it

follows that R′ ∈ D(C). As ML(R) = k 6= R, Theorem 2.3 implies that R ∈ D(k). �

3.8. Corollary. Let R be a 2-dimensional affine domain over a field k of characteristic

zero. If R is a UFD and a smooth k-algebra satisfying ML(R) = k, then R ∈ D(k).

Proof. Since R is a UFD, the scheme X = SpecR has a trivial divisor class group [15,
6.2 p. 131]. By Remark 3.4, it follows that

∧2 ΩR/k
∼= R and the desired conclusion

follows from Theorem 3.2. �
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4. Localizations of nice rings

Throughout this section we fix a field k of characteristic zero and we consider the
class N(k) of k-algebras B satisfying the following conditions:

B is a geometrically integral affine k-domain which is smooth over k

and satisfies at least one of the following conditions:

• B is a UFD; or

• B is a complete intersection over k.

Note that k[n] ∈ N(k) for every n.

4.1. Theorem. Suppose that R is a localization of a ring belonging to the class N(k).
If ML(R) = K for some field K ⊂ R such that trdegK R = 2, then R ∈ D(K).

4.2. Lemma. Let B ∈ N(k), let E be a finitely generated k-subalbebra of B and let

S = E \ {0}. Then S−1B is a smooth algebra over the field S−1E.

Proof. Let k̄ be an algebraic closure of k and define Ē = k̄ ⊗k E and B̄ = k̄ ⊗k B.

Note that B̄ is a domain because B is geometrically integral, and Ē → B̄ is injective
because k̄ is flat over k. Let K = FracE and L = Frac Ē. As B̄ is smooth over k̄,

applying [15, 10.7, p. 272] to Spec B̄ → Spec Ē implies that L → L ⊗Ē B̄ is smooth.
It is not difficult to see that L → L ⊗Ē B̄ is obtained from K → K ⊗E B by base
extension. As K is a field and L → L⊗Ē B̄ is smooth, it follows from [18, 28.O] that

K → K ⊗E B is smooth. �

4.3. Lemma. Let B ∈ N(k), let S be a multiplicative subset of B and suppose that K

is a field such that k ∪ S ⊆ K ⊆ S−1B. Then S−1B is a smooth K-algebra and some

transcendence basis of K/k is a subset of B.

Proof. Note thatK/k is a finitely generated field extension and writeK = k(α1, . . . , αm).

For each i we have αi = bi/si for some bi ∈ B and si ∈ S; as S ⊆ K, we have
bi = siαi ∈ K. Define E = k[b1, . . . , bm, s1, . . . , sm] ⊆ K and S1 = E \ {0}, then

S−1
1 E = K and hence S−1

1 B = S−1B. By Lemma 4.2, S−1B is a smooth K-algebra.
Moreover, {b1, . . . , bm, s1, . . . , sm} contains a transcendence basis of K/k. �

Proof of Theorem 4.1. We have R = S−1B for some B ∈ N(k) and some multiplicative

subset S of B. As k∗ ∪ S ⊆ R∗ ⊆ ML(R) = K, R is smooth over K by Lemma 4.3.
By definition of N(k), B is a UFD or a complete intersection over k.

If B is a UFD then so is R; in this case we obtain R ∈ D(K) by Corollary 3.8, so

we are done.
From now-on, assume that B is a complete intersection over k. Let q = dimB

and write B = k[X1, . . . , Xp+q]/(G1, . . . , Gp). Using Lemma 4.3 again, choose a tran-

scendence basis {f1, . . . , fq−2} of K over k such that f1, . . . , fq−2 ∈ B; let S0 =
k[f1, . . . , fq−2] \ {0} and K0 = k(f1, . . . , fq−2). We claim:

(9) S−1
0 B is a complete intersection over K0.
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Let us prove this. For 1 ≤ i ≤ q − 2, choose Fi ∈ k[X1, . . . , Xp+q] such that π(Fi) = fi

where π : k[X1, . . . , Xp+q] → B is the canonical epimorphism. Also, let T1, . . . , Tq−2 be

extra indeterminates. The k-homomorphism k[T1, . . . , Tq−2, X1, . . . , Xp+q] → B which
maps Ti to fi and Xi to π(Xi) has kernel (G1, . . . , Gp, F1 − T1, . . . , Fq−2 − Tq−2), so

there is an isomorphism of k-algebras

B ∼= k[T1, . . . , Tq−2, X1, . . . , Xp+q]/(G1, . . . , Gp, F1 − T1, . . . , Fq−2 − Tq−2).

Localization gives an an isomorphism of k-algebras

(10) S−1
0 B ∼= k(T1, . . . , Tq−2)[X1, . . . , Xp+q]/(G1, . . . , Gp, F1 − T1, . . . , Fq−2 − Tq−2)

which maps K0 onto k(T1, . . . , Tq−2). As the right hand side of (10) is a complete
intersection over k(T1, . . . , Tq−2), assertion (9) is proved. Then we obtain

(11)
∧2 ΩS−1

0
B/K0

∼= S−1
0 B

by Lemma 3.6, because S−1
0 B is a smooth K0-algebra by Lemma 4.2.

Each element of K belongs to Frac(S−1
0 B) and is algebraic over K0, hence integral

over S−1
0 B; as S−1

0 B is normal, K ⊆ S−1
0 B and hence S−1

0 B = R. We may therefore
rewrite (11) as:

(12)
∧2 ΩR/K0

∼= R.

Applying [18, 26.H] to K0 ⊆ K ⊆ R gives the exact sequence of R-modules

ΩK/K0
⊗K R→ ΩR/K0

→ ΩR/K → 0,

where ΩK/K0
= 0 by [18, 27.B]. So ΩR/K

∼= ΩR/K0
and hence (12) gives

∧2 ΩR/K
∼= R.

So R ∈ D(K) by Theorem 3.2. �

Let k be a field of characteristic zero, let B ∈ N(k) and consider locally nilpotent
derivations D : B → B. See 1.1 for the definition of klnd(B). It is known that if
A ∈ klnd(B) then trdegA(B) = 1, and if A1, A2 are distinct elements of klnd(B)
then trdegA1∩A2

(B) ≥ 2. We are interested in the situation where trdegA1∩A2
(B) = 2,

i.e., when A1, A2 are distinct and have an intersetion which is as large as possible.

4.4. Corollary. Let B ∈ N(k), where k is a field of characteristic zero. If A1, A2 ∈
klnd(B) are such that trdegA1∩A2

(B) = 2, then the following hold.

(a) Let R = A1 ∩ A2 and K = FracR. Then K ⊗R B ∈ D(K).

(b) If B is a UFD then there exists a finite sequence of local slice constructions

which transforms A1 into A2.

Remark. This generalizes results 1.10 and 1.13 of [6]. Local slice construction was
originally defined in [12] in the case B = k[3], and was later generalized in [5].

Proof of Corollary 4.4. Let S = R\{0}, Ai = S−1Ai (i = 1, 2) and B = S−1B = K⊗R

B. If Di ∈ lnd(B) has kernel Ai, then S−1Di ∈ lnd(B) has kernel Ai; thus A1,A2 ∈
klnd(B). Using that A1, A2 are factorially closed in B, we obtain A1 ∩ A2 ⊆ K, so

ML(B) ⊆ K. The reverse inclusion is trivial (K∗ ⊆ B
∗ ⊆ ML(B)), so ML(B) = K.

Then B ∈ D(K) by Theorem 4.1, so assertion (a) is proved.
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In [5, 3.3], one defines a graph klnd (B) whose vertex-set is klnd(B); then, given
A,A′ ∈ klnd(B), one says that A′ can be obtained from A “by a local slice construc-

tion” if there exists an edge in klnd (B) joining vertices A and A′. So assertion (b)
of the Corollary is equivalent to the existence of a path in klnd (B) going from A1 to

A2. Paragraph [5, 3.2.2] also defines a subgraph klnd R(B) of the graph klnd (B),
and clearly A1, A2 are two vertices of klnd R(B); so, to prove (b), it suffices to show
that klnd R(B) is a connected graph. We have R ∈ Rin(B) (cf. [5, 5.2]) and con-

sequently (cf. [5, 5.3], using that B is a UFD) we have an isomorphism of graphs
klnd R(B) ∼= klnd K(B). As B ∈ D(K) by part (a), we may apply [5, 4.8] and
conclude that klnd K(B) is connected. Assertion (b) is proved. �

The following is a trivial consequence of Corollary 4.4.

4.5. Corollary. Let B ∈ N(k), where k is a field of characteristic zero. Suppose that

B has transcendence degree two over ML(B).

(1) Let R = ML(B) and K = FracR. Then K ⊗R B ∈ D(K).
(2) If B is a UFD then, for any A1, A2 ∈ klnd(B), there exists a finite sequence

of local slice constructions which transforms A1 into A2.
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