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 Lukȩcin, Poland, September 2003

Conventions

• The word “ring” means commutative ring with a unity element.
• The group of units of a ring A is denoted A∗.
• We write A ≤ B to indicate that A is a subring of B. If A ≤ B, the phrase “B is

affine over A” means that B is finitely generated as an A-algebra.
• A “domain” is an integral domain. If A ≤ B are domains, then the transcendence

degree of Frac(B) over Frac(A) is denoted trdegA(B).
• If A is a ring and n ≥ 0 an integer, A[n] denotes any A-algebra isomorphic to the

polynomial ring in n variables over A.

1. Derivations of a ring

A derivation D of a ring B is a map D : B → B satisfying

D(x+ y) = D(x) +D(y) and D(xy) = D(x)y + xD(y), for all x, y ∈ B.
Given a derivation D of a ring B, define the set BD = kerD = {x ∈ B | D(x) = 0} and
note that this is a subring of B. If k ≤ B are rings and D is a derivation of B satisfying
D(k) = {0}, we call D a k-derivation of B; in this case we have k ≤ ker(D) ≤ B. We
use the notations:

Der(B) = set of all derivations of B, Derk(B) = set of all k-derivations of B.

Note that Der(B) is a B-module and that Derk(B) is a B-submodule of Der(B).

1.1. Example. Let k be a ring and B = k[X1, . . . , Xn] = k[n]. Here are two ways to

define a k-derivation of B.

(1) Given (f1, . . . , fn) ∈ Bn, there is a unique D ∈ Derk(B) satisfying D(Xi) = fi for

all i ∈ {1, . . . , n} (namely, D =
∑n

i=1 fi ∂/∂Xi). So Derk(B) is a free B-module
with basis {∂/∂X1, . . . , ∂/∂Xn}.

(2) Given f = (f1, . . . , fn−1) ∈ Bn−1, define the jacobian derivation ∆f ∈ Derk(B) by

∆f (g) = det
(
∂(f1,...,fn−1,g)
∂(X1 ,...,Xn)

)
, for each g ∈ B. Note that k[f1, . . . , fn−1] ⊆ ker(∆f ).

Exercise 1.1. Let B be a ring, D ∈ Der(B), f ∈ B[T ] and b ∈ B. Show that

D
(
f(b)

)
= f (D)(b) + f ′(b)D(b),

where f ′ ∈ B[T ] is the T -derivative of f and where f (D) =
∑

iD(bi)T
i ∈ B[T ] (where

f =
∑

i biT
i, bi ∈ B). More generally, if f ∈ B[T1, . . . , Tn] and b1, . . . , bn ∈ B then

D
(
f(b1, . . . , bn)

)
= f (D)(b1, . . . , bn) +

∑n
i=1 fTi

(b1, . . . , bn)D(bi),

where fTi
= ∂ f

∂ Ti
∈ B[T1, . . . , Tn].

1
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1.2. Definition. Let A ≤ B be rings. An element b ∈ B is algebraic over A if there exists
a nonzero polynomial f ∈ A[T ]\{0} such that f(b) = 0 (note that f is not required to be
monic); if b is not algebraic over A, we say that b is transcendental over A; we say that A

is algebraically closed in B if each element of B \ A is transcendental over A.

Exercise 1.2. Let A ≤ B be domains. The set A = {b ∈ B | b is algebraic over A } is

called the algebraic closure of A in B. Show that A = B ∩ L where L is the algebraic
closure of FracA in FracB. Consequently, A is a subring of B (A ≤ A ≤ B).

1.3. Lemma. If B is a domain of characteristic zero and D ∈ Der(B) then kerD is
algebraically closed in B.

Proof. Let A = kerD and consider b ∈ B algebraic over A. Let f ∈ A[T ] be a nonzero
polynomial of minimal degree such that f(b) = 0. Then

0 = D(f(b)) = f (D)(b) + f ′(b)D(b) = f ′(b)D(b).

We have f ′ 6= 0, so f ′(b) 6= 0 by minimality of deg f , so D(b) = 0. �

We mention (without proof) a related result:

1.4. Theorem (Nowicki). Let B be an affine domain over a field k of characteristic zero.
Then, for a k-subalgebra A of B, tfae:

(1) A is algebraically closed in B

(2) A = ker(D) for some D ∈ Derk(B).

Exercise 1.3. If B = ⊕∞
i=0Bi is an N-graded domain, B0 is algebraically closed in B.

Exercise 1.4. Let A ≤ B be domains.

(1) If Frac(A) is algebraically closed in Frac(B) and B ∩ Frac(A) = A, then A is

algebraically closed in B. (The converse does not hold, by part (2).)

(2) Let A = Q and B = Q[X, Y ]/(X2 + Y 2). Use exercise 1.3 to show that A is
algebraically closed in B; show that FracA is not algebraically closed in FracB.

Exercise 1.5. Let B = C[X, Y ] = C[2] and A = C[XY ].

(1) Show that Frac(B) is a purely transcendental extension of Frac(A).

(2) Use exercise 1.4 to show that A is algebraically closed in B.

(3) Consider the jacobian derivation D =

∣∣∣∣∣

∂(XY )
∂X

∂(XY )
∂Y

∂
∂X

∂
∂Y

∣∣∣∣∣ = Y ∂
∂Y
−X ∂

∂X
∈ DerC(B).

Note that D 6= 0 and D(XY ) = 0; conclude that ker(D) = A.

1.5. Definition. Given a ring B and D ∈ Der(B), define the set

Nil(D) = {x ∈ B | ∃n∈N Dn(x) = 0} .
By exercise 1.7 this is a subring of B, so we have: ker(D) ≤ Nil(D) ≤ B.
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1.6. Example. Let B = Q[[T ]] and D = d/dT : B → B. Then ker(D) = Q and
Nil(D) = Q[T ]. Note that Nil(D) is not algebraically closed in B (not even integrally
closed in B): Let b =

√
1 + T ∈ B, then b 6∈ Nil(D) but b2 ∈ Nil(D).

Exercise 1.6. Prove Leibnitz Rule: If B is a ring, D ∈ Der(B), x, y ∈ B and n ∈ N,

Dn(xy) =

n∑

i=0

(
n

i

)
Dn−i(x)Di(y).

Exercise 1.7. Use Leibnitz Rule to show that Nil(D) is closed under multiplication.

2. Locally nilpotent derivations

2.1. Definition. Let B be any ring.

(1) A derivation D : B → B is locally nilpotent if it satisfies Nil(D) = B, i.e., if

∀b∈B∃n∈N D
n(b) = 0.

(2) Notations:

lnd(B) = set of locally nilpotent derivations B → B

klnd(B) = {kerD | D ∈ lnd(B) and D 6= 0} .

If k ≤ B,

lndk(B) = lnd(B) ∩Derk(B)

klndk(B) = {kerD | D ∈ lndk(B) and D 6= 0} .

2.2. Examples. Let k be a ring and B = k[X1, . . . , Xn] = k[n].

(1) For each i, the partial derivative ∂
∂ Xi

: B → B belongs to lndk(B).

(2) A k-derivation D : B → B is triangular if

∀ i D(Xi) ∈ k[X1, . . . , Xi−1] (in particular D(X1) ∈ k).

Every triangular k-derivation is locally nilpotent. Indeed, if D is triangular then
k ⊆ Nil(D) and it is easy to see (by induction on i) that ∀ i Xi ∈ Nil(D); so

Nil(D) = B, i.e., D is locally nilpotent.

The sets lnd(B) and lndk(B) are not closed under addition and not closed under
multiplication by elements of B. For instance, let B = Q[X, Y ] = Q[2], D1 = Y ∂

∂X
and

D2 = X ∂
∂Y

; then D1, D2 ∈ lnd(B) (because they are triangular) but D1 +D2 6∈ lnd(B)

(because (D1 +D2)
2(X) = X). Also, ∂

∂X
∈ lnd(B) but X ∂

∂X
6∈ lnd(B). However:

2.3. Lemma. Let B be a ring. If D1, D2 ∈ lnd(B) satisfy D2 ◦ D1 = D1 ◦ D2, then
D1 +D2 ∈ lnd(B).

Proof. Let D1, D2 ∈ lnd(B) such that D2 ◦D1 = D1 ◦D2 and let b ∈ B. Choose m,n ∈ N

such that Dm
1 (b) = 0 = Dn

2 (b). The hypothesis D2 ◦D1 = D1 ◦D2 has the following three
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consequences:

∀i∈N ∀j≥n (Di
1 ◦Dj

2)(b) = Di
1(0) = 0,

∀i≥m ∀j∈N (Di
1 ◦Dj

2)(b) = (Dj
2 ◦Di

1)(b) = Dj
2(0) = 0,

(D1 +D2)m+n−1 =
∑

i+j=m+n−1

(
m+n−1

i

)
Di

1 ◦Dj
2,

so (D1 +D2)
m+n−1(b) = 0. Hence, D1 +D2 ∈ lnd(B). �

Exercise 2.1. Let B be a ring, D ∈ lnd(B) and A = kerD.

(1) If a ∈ A then aD ∈ lnd(B). (First show that (aD)n = anDn holds for all n ∈ N.)

(2) If S ⊂ A is a multiplicatively closed set, then S−1D : S−1B → S−1B belongs to

lnd(S−1B) and ker(S−1D) = S−1A.

(3) Let T be an indeterminate and f ∈ B[T ]. Then D has a unique extension ∆ ∈
Der(B[T ]) such that ∆(T ) = f . If f ∈ B, then ∆ ∈ lnd(B[T ]).

Exercise 2.2. If A is a ring and B = A[T ] = A[1], then
{
a d
dT

∣∣ a ∈ A
}
⊆ lndA(B). Show

that equality holds whenever A is a domain of characteristic zero. Find an example where
the inclusion is strict.

2.4. Definition. Let B be a ring and D ∈ lnd(B). Define a map degD : B → N∪{−∞}
by degD(x) = max {n ∈ N | Dnx 6= 0} for x ∈ B \ {0}, and degD(0) = −∞. Note that
kerD = {x ∈ B | degD(x) ≤ 0}. We will see in 2.14 that degD has good properties when

B is a domain of characteristic zero.

2.5. Definition. Let B be a ring and D ∈ lnd(B). A slice of D is an element s ∈ B
satisfying D(s) = 1. A preslice of D is an element s ∈ B satisfying D(s) 6= 0 and
D2(s) = 0 (i.e., degD(s) = 1).

It is clear that if D ∈ lnd(B) and D 6= 0 then D has a preslice. However:

2.6. Example. Let k be a field, B = k[X, Y, Z] = k[3] and consider the k-derivation
D = X ∂

∂Y
+ Y ∂

∂Z
. Since D is triangular, it is locally nilpotent. Since D(B) ⊆ (X, Y )B,

D does not have a slice.

The next fact has many consequences for locally nilpotent derivations:

2.7. Proposition. Consider rings B ≤ C ≥ Q. If D ∈ lnd(B) and γ ∈ C then the map

B −→ C, b 7−→
∑

n∈N

1

n!
Dn(b) γn

is a homomorphism of A-algebras, where A = ker(D).

Proof. It is clear that the given map preserves addition and restricts to the identity map
on A. So it suffices to verify that

(1)

(
∑

i∈N

1

i!
Di(x) γi

)(
∑

j∈N

1

j!
Dj(y) γj

)
=
∑

n∈N

1

n!
Dn(xy) γn
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holds for all x, y ∈ B. In the left hand side of (1), the coefficient of γn is
∑

i+j=n

1

i! j!
Di(x)Dj(y) =

1

n!

∑

i+j=n

n!

i! j!
Di(x)Dj(y),

which is equal to 1
n!
Dn(xy) by Leibnitz Rule. �

Locally nilpotent derivations of Q-algebras

Exercise 2.3. If B is a Q-algebra then Der(B) = DerQ(B).

The following result is Proposition 2.1 of [19]:

2.8. Theorem. Let B be a Q-algebra. If D ∈ lnd(B) and s ∈ B satisfy Ds = 1 then
B = A[s] = A[1], where A = ker(D).

Proof. Consider f(T ) =
∑n

i=0 aiT
i ∈ A[T ] \ {0} (where n ≥ 0, ai ∈ A and an 6= 0). Then

Dj(f(s)) = f (j)(s) for all j ≥ 0, where f (j)(T ) ∈ A[T ] denotes the j-th derivative of f ;

so Dn(f(s)) = n! an 6= 0 and in particular f(s) 6= 0. So s is transcendental over A, i.e.,
A[s] = A[1].

To show that B = A[s], consider the homomorphism of A-algebra ξ : B → B, ξ(x) =∑∞

j=0
Djx
j!

(−s)j (use 2.7 with B = C and γ = −s). For each x ∈ B,

D
(
ξ(x)

)
=

∞∑

j=0

Dj+1x

j!
(−s)j +

∞∑

j=0

Djx

j!
j(−s)j−1(−1) = 0,

so ξ(B) ⊆ A; since ξ is a A-homomorphism, ξ(B) = A.
By induction on degD(x), we show that ∀x∈B x ∈ A[s]. This is clear if degD(x) ≤ 0, so

assume that degD(x) ≥ 1. Since x = ξ(x) + (x− ξ(x)) where x− ξ(x) ∈ sB,

(2) x = a+ x′s, for some a ∈ A and x′ ∈ B.

This implies that Dx = D(x′)s+ x′ and it easily follows that

(3) ∀m≥1 Dm(x) = Dm(x′)s+mDm−1(x′).

Choose m ≥ 1 such that Dm−1(x′) 6= 0 and Dm(x′) = 0 (such an m exists because

degD(x) ≥ 1, so x 6∈ A, so x′ 6= 0). Then (3) gives Dm(x) = mDm−1(x′) 6= 0 and
Dm+1(x) = 0, so degD(x′) = degD(x)− 1. By the inductive hypothesis we have x′ ∈ A[s];

then (2) gives x ∈ A[s]. �

2.9. Corollary. Let B be a Q-algebra, D ∈ lnd(B) and A = ker(D). If s ∈ B satisfies

Ds 6= 0 and D2s = 0, then Bα = Aα[s] = A
[1]
α where α = Ds ∈ A \ {0}.

Proof. Let S = {1, α, α2, . . . } and consider S−1D : S−1B → S−1B. By exercise 2.1,
S−1D ∈ lnd(S−1B), ker(S−1D) = S−1A and (S−1D)(s/α) = 1, so the result follows
from 2.8. �

Exercise 2.4. Let B = Z[X, Y ] = Z[2] and D = ∂
∂Y

+ Y ∂
∂X

. Since D is triangular, we

have D ∈ lnd(B). Moreover, DY = 1. Show that kerD = Z[2X − Y 2] and that B is
not a polynomial ring over kerD. (So in 2.8 the hypothesis that B is a Q-algebra is not

superfluous.)
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Exercise 2.5. Let B be a Q-algebra, D ∈ lnd(B) and A = kerD. Show:

D : B → B is surjective ⇐⇒ D(B) ∩ A∗ 6= ∅ ⇐⇒ D has a slice =⇒ B = A[1].

Locally nilpotent derivations of integral domains

Recall the notation klnd(B) = {kerD | D ∈ lnd(B) and D 6= 0 }.
2.10. Lemma. Let B be a domain of characteristic zero.

(1) If A ∈ klnd(B) then S−1B = (FracA)[1], where S = A \ {0}; in particular,
trdegA(B) = 1.

(2) If A,A′ ∈ klnd(B) and A ⊆ A′, then A = A′.

(3) Let A ∈ klnd(B) and let D and D′ be nonzero elements of lndA(B). Then there

exist a, a′ ∈ A \ {0} such that aD = a′D′. In particular, D ◦D′ = D′ ◦D.

(4) If A ∈ klnd(B) then lndA(B) is an A-module.

Proof. Let A ∈ klnd(B); consider D ∈ lnd(B), D 6= 0, such that kerD = A. If we

write S = A \ {0} and K = Frac(A) then exercise 2.1 gives S−1D ∈ lnd(S−1B) and
ker(S−1D) = K; it is clear that S−1D has a slice, i.e., there exists t ∈ S−1B such that
(S−1D)(t) = 1; then 2.8 implies that S−1B = K[t] = K [1], which proves assertion (1).

If A,A′ ∈ klnd(B) then trdegA(B) = 1 = trdegA′(B) by part (1). If also A ⊆ A′,
it follows that A′ is algebraic over A; as A is algebraically closed in B by 1.3, we have

A = A′, so (2) is true.
Let A ∈ klnd(B) and S = A \ {0}. By part (1), S−1B = K[t] = K [1] for some

t ∈ S−1B. If D and D′ are nonzero elements of lndA(B) then S−1D and S−1D′ are

nonzero elements of lndK(K[t]). By exercise 2.2, each nonzero element of lndK(K[t])
has the form λ d

dt
for some λ ∈ K∗; it follows that S−1D′ = λS−1D for some λ ∈ K∗ and

consequently aD = a′D′ for some a, a′ ∈ A \ {0}. It easily follows that D ◦D′ = D′ ◦D,

which proves (3). In view of 2.3, it follows that lndA(B) is closed under addition, so (4)
is true. �

2.11. Definition. Let A ≤ B be domains. We say that A is factorially closed in B if:

∀ x, y ∈ B xy ∈ A \ {0} =⇒ x, y ∈ A.
Exercise 2.6. Suppose that A is a factorially closed subring of a domain B. Then:

(1) A is algebraically closed in B and A∗ = B∗.

(2) An element of A is irreducible in A iff it is irreducible in B.

(3) If B is a UFD then so is A.

2.12. Definition. A degree function on a ring B is a map deg : B → N∪{−∞} satisfying:

(1) ∀ x ∈ B deg x = −∞ ⇐⇒ x = 0

(2) ∀ x, y ∈ B deg(xy) = deg x+ deg y

(3) ∀ x, y ∈ B deg(x+ y) ≤ max(deg x, deg y).

Note that if B admits a degree function then it is a domain, by (1) and (2).
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2.13. Lemma. If deg is a degree function on a domain B then {x ∈ B | deg x ≤ 0} is a
factorially closed subring of B.

Proof. Obvious. �

2.14. Proposition. Let B be a domain of characteristic zero and D ∈ lnd(B). Then the

map
degD : B → N ∪ {−∞}

(defined in 2.4) is a degree function.

Proof. Consider the ring C = (S−1B)[T ], where S = Z \ {0} and T is an indeterminate.

Then B ≤ C ≥ Q, so 2.7 (with γ = T ∈ C) implies that ξ : B → C, ξ(b) =
∑∞

i=0
Dn(b)
n!

T n,
is a ring homomorphism. Moreover, ξ is injective because setting T = 0 in ξ(b) gives

b. Now degD is the composite B
ξ−→ (S−1B)[T ]

degT−−−−→ N ∪ {−∞}, which is a degree
function on B. �

2.15. Corollary. Let B be a domain of characteristic zero, D ∈ lnd(B) and A = ker(D).
Then A is a factorially closed subring of B. In particular A∗ = B∗, and if k is any field

contained in B then D is a k-derivation.

Proof. A = {x ∈ B | degD(x) ≤ 0} is clear, so A is factorially closed in B by 2.14 and

2.13. It follows that A∗ = B∗ and consequently every field contained in B is in fact
contained in A. �

2.16. Theorem. Let B be a domain of characteristic zero and 0 6= D ∈ Der(B).

(1) Let b ∈ B \ {0} and consider bD ∈ Der(B). Then

bD ∈ lnd(B) ⇐⇒ D ∈ lnd(B) and b ∈ ker(D).

(2) Let S ⊂ B be a multiplicatively closed set and consider the derivation S−1D :

S−1B → S−1B. Then

S−1D ∈ lnd(S−1B) ⇐⇒ D ∈ lnd(B) and S ⊂ ker(D).

Moreover, if S ⊂ ker(D) then ker(S−1D) = S−1 ker(D).

(3) Let T be an indeterminate, let f ∈ B[T ] and consider the unique extension ∆ ∈
Der(B[T ]) of D such that ∆(T ) = f . Then

∆ ∈ lnd(B[T ]) ⇐⇒ D ∈ lnd(B) and f ∈ B.

Proof. In each case (1), (2), (3), we prove (⇒); see exercise 2.1 for (⇐).
(1) Assume that bD is locally nilpotent; since it is also nonzero, there exists s ∈ B such

that (bD)(s) 6= 0 and (bD)2(s) = 0. Then bD(s) belongs to the factorially closed subring

ker(bD) of B, so b ∈ ker(bD) = ker(D). It follows that (bD)n = bnDn for all n, so D is
locally nilpotent and (⇒) is true. This proves (1).

(2) Assume that S−1D is locally nilpotent. Since D is a restriction of S−1D, D is
locally nilpotent and B ∩ ker(S−1D) = kerD. Also, S ⊆ (S−1B)∗ ⊂ ker(S−1D) by 2.15,
so S ⊆ B ∩ ker(S−1D) = kerD and (⇒) is true.
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If S ⊂ ker(D) then (S−1D)(b/s) = (Db)/s for all b ∈ B and s ∈ S, so ker(S−1D) =
S−1 ker(D).

(3) Assume that ∆ is locally nilpotent. Then its restriction D is locally nilpotent.

Consider g ∈ B[T ] \B such that ∆(g) ∈ B; then

B 3 ∆(g) = g(D)(T ) + g′(T )f(T )

and it follows that degT (f) ≤ 1. Write f = aT + b (with a, b ∈ B) and denote the leading
term of g by αT n (with n > 0, α ∈ B \ {0}). Then

0 = (coefficient of T n in ∆(g)) = D(α) + naα,

so degD(naα) = degD(D(α)) < degD(α). Since degD(naα) = degD(a)+degD(α), we have

degD(a) < 0 so a = 0. Hence, f ∈ B. �

Exercise 2.7. In exercise 1.5, observe that A = kerD is not factorially closed in B.

Exercise 2.8. Let B be a domain of characteristic zero and suppose that D ∈ Der(B)
satisfies Dn = 0 for some n > 0. Show that D = 0.

Exercise 2.9. Let B be a domain such that: (1) B has transcendence degree 1 over some
field k0 ≤ B of characteristic zero; (2) lnd(B) 6= {0}. Show that B = k[1] for some field
k contained in B.

Exercise 2.10. Consider the subring B = C[T 2, T 3] of C[T ] = C[1]. Show that the only
locally nilpotent derivation B → B is the zero derivation.

Exercise 2.11. Let X, Y be indeterminates, k = Q(X) and B = k[Y ]/(Y 2). If y ∈ B
denotes the residue class of Y then B = k[y], y 6= 0 and y2 = 0. Show that there exists

D ∈ DerQ(B) such that D(X) = y and D(y) = 0. Show that D2 = 0, so D ∈ lnd(B).
However, D is not a k-derivation! (Compare with 2.15.)

Exercise 2.12. Let B be a domain of characteristic zero and D,D′ ∈ lnd(B).

(1) Show: kerD = kerD′ ⇐⇒ degD = degD′ (equality of functions).

(Hint: Use part (3) of 2.10.)

(2) Assume that D and D′ have the same kernel A and that s ∈ B is a preslice of D.
Show that D(s), D′(s) ∈ A \ {0} and D′(s)D = D(s)D′.
(Hint: Consider D′(s)D −D(s)D′ ∈ Der(B).)

Irreducible derivations

2.17. Definition. Let B be a ring. A derivation D : B → B is irreducible if the only
principal ideal of B which contains D(B) is B.

Exercise 2.13. Let B be a domain and D ∈ Der(B). Show that D is irreducible if and
only if:

D = a∆, a ∈ B, ∆ ∈ Der(B) =⇒ a ∈ B∗.

Exercise 2.14. Let k be a field, B = k[X1, . . . , Xn] = k[n] and D ∈ Derk(B). Show that
D is irreducible if and only if gcd(DX1, . . . , DXn) = 1.
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Exercise 2.15. Let B be a domain containing Q and D ∈ lnd(B). Show that if D is
irreducible then:

D is surjective ⇐⇒ D ∩B∗ 6= ∅ ⇐⇒ D has a slice ⇐⇒ B = (kerD)[1].

We say that a ring B satisfies the ACC for principal ideals if every strictly increasing
sequence I1 ⊂ I2 ⊂ · · · of principal ideals of B is a finite sequence, or equivalently if every
nonempty collection of principal ideals of B has a maximal element.1 Note that every
UFD and every noetherian ring satisfies this condition.

2.18. Lemma. Let B be a domain and let D ∈ Der(B), D 6= 0.

(1) If B satisfies the ACC for principal ideals, then there exists an irreducible deriva-
tion D0 ∈ Der(B) such that D = aD0 for some a ∈ B.

(2) If B is a UFD then the D0 in part (1) is unique up to multiplication by a unit.

Proof. To prove (1), we may assume that D is not irreducible (otherwise the claim is

trivial). Then the set A = {a ∈ B \B∗ | D(B) ⊆ aB} is nonempty. Fix x ∈ B such that
D(x) 6= 0 and consider the following (nonempty) collection of principal ideals of B:

Σ =
{(

Dx
a

)
B
∣∣ a ∈ A

}
.

By our assumption on B, we may choose a ∈ A in such a way that I =
(
Dx
a

)
B is a

maximal element of Σ. As D(B) ⊆ aB and B is a domain, x 7→ a−1D(x) defines a map
D0 : B → B. It is easily seen that D0 ∈ Der(B) and, obviously, D = aD0. To show that

D0 is irreducible, consider b ∈ B such that D0(B) ⊆ bB; we have to show that b ∈ B∗.
We have D(B) ⊆ abB, so ab ∈ A and consequently J =

(
Dx
ab

)
B ∈ Σ. As I ⊆ J , we have

I = J because I is a maximal element of Σ, so Dx
ab
∈
(
Dx
a

)
B and consequently b ∈ B∗.

This proves assertion (1).

To prove (2), suppose that B is a UFD and that a1D1 = a2D2, where D1, D2 ∈ Der(B)
are irreducible and a1, a2 ∈ B \ {0}; we have to show that D1 = uD2 for some u ∈ B∗.
We may assume that gcd(a1, a2) = 1. Suppose that a1 6∈ B∗. Then there exists a prime

element p of B such that p | a1; for every x ∈ B we have p | a2D2(x), so p | D2(x); this
means that D2(B) ⊆ pB, which contradicts the fact that D2 is irreducible. Thus a1 is a

unit and (by symmetry) so is a2. �

2.19. Corollary. Let B be a domain of characteristic zero satisfying ACC for principal

ideals, let A ∈ klnd(B) and consider the set

S = {D ∈ lndA(B) | D is an irreducible derivation } .
Then S 6= ∅ and lndA(B) = {aD | a ∈ A and D ∈ S }.
Proof. By 2.18, each nonzero element of lndA(B) has the form aD where a ∈ B \{0} and
D ∈ DerA(B) is an irreducible derivation. By 2.16, we have D ∈ lndA(B) and a ∈ A. �

2.20. Corollary. Let B be a UFD of characteristic zero and let A ∈ klnd(B). Then
lndA(B) contains an irreducible derivation D, unique up to multiplication by a unit.

Moreover, for any such D we have lndA(B) = {aD | a ∈ A}.
1We are not saying that this maximal element is a maximal ideal!
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In view of the above facts, we may make the following comments:

2.21. Statement of the problem. Given a ring B, the problem of describing lnd(B)

splits into two parts:

(I) Describe klnd(B). In other words, answer the question:

Which subrings of B are kernels of locally nilpotent derivations B → B ?

(II) For each A ∈ klnd(B), describe lndA(B).

• If B is a UFD of characteristic zero, it suffices to give the unique (2.20)
irreducible element of lndA(B).
• If B is a noetherian domain, it suffices (2.19) to give all irreducible elements

of lndA(B).

Usually, step (I) is more difficult and more interesting than step (II). However the
following exercises show that step (II) is sometimes problematic. In ex. 2.16, B is a
noetherian domain of characteristic zero (and hence satisfies ACC for principal ideals);
in ex. 2.17, B is a domain of characteristic zero which does not satisfy ACC for principal
ideals.

Exercise 2.16. Let R be the subring C[T 2, T 3] of C[T ] = C[1] and let B = R[X, Y ] = R[2].
Let L = X + TY (and note that L 6∈ B). For each integer n ≥ 0, define an R-derivation

Dn : B → B by Dn(X) = −T 3Ln and Dn(Y ) = T 2Ln.

(1) Verify that D2
n(X) = 0 = D2

n(Y ), so Dn ∈ lndR(B).

(2) Show that Dn is irreducible.

(3) Fix N > 0 and consider D = T 2DN ∈ lnd(B). Show that for each n ∈ {0, . . . , N}
there exists αn ∈ B such that D = αnDn (compare with part (2) of 2.18, i.e., note
that uniqueness does not hold here). Show that the Dn all have the same kernel.

Let A denote the kernel of any Dn. By the above, lndA(B) contains the infinite family
{Dn | n ∈ N} of irreducible derivations. Actually lndA(B) contains many more irre-

ducible derivations. It is possible to describe the set S of 2.19, but we will not do it
here.

Exercise 2.17. Let a, u, v be indeterminates over C and let R be the C-subalgebra
of C(a, u, v) generated by {a} ∪ {u/an | n ∈ N} ∪ {v/an | n ∈ N}. Equivalently, R is
the C-vector space with basis the monomials aiujvk such that (i, j, k) ∈ Z × N2 and

(i, j, k) 6∈ {−1,−2, . . . } × {(0, 0)}.
(1) Show that aR 6= R and that if f, g ∈ R satisfy fv = gu, then f, g ∈ aR.

(2) Let B = R[X, Y ] = R[2]. Deduce from (1) that aB 6= B and that if f, g ∈ B

satisfy fv = gu, then f, g ∈ aB.

(3) Show that if an R-derivation ∆ : B → B satisfies ∆(vX − uY ) = 0, then ∆ is not
irreducible.

(4) Consider the R-derivation D = u ∂
∂X

+ v ∂
∂Y

: B → B. Show that D ∈ lndR(B).
Define A = kerD, thus A ∈ klndR(B). Show that no element of DerA(B) is an

irreducible derivation (hence no element of lndA(B) is irreducible).
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A remark in the factorial case

2.22. Lemma. Let B be a UFD containing Q. If A ∈ klnd(B) and p is a prime element

of A then the following hold:

(1) p is a prime element of B and A∩ pB = pA. Consequently, we have the inclusion

A/pA ≤ B/pB of domains.
(2) The algebraic closure of A/pA in B/pB is an element of klnd(B/pB).

Proof. Assertion (1) easily follows from the fact that A is factorially closed in B. To
prove (2), consider the transcendence degree d of B/pB over A/pA. By 2.20, we may
consider an irreducible D ∈ lnd(B) such that kerD = A. In particular D(B) 6⊆ pB, so

the “induced” locally nilpotent derivation D/p : B/pB → B/pB is nonzero; it follows
that B/pB has transcendence degree 1 over ker(D/p) and since A/pA ≤ ker(D/p) we get
d > 0.

Let π : B → B/pB be the canonical epimorphism. Given any f, g ∈ B, there exists
F (T1, T2) ∈ A[T1, T2]\{0} such that F (f, g) = 0 and we may arrange that some coefficient
of F is not in pA; then F (π)(T1, T2) ∈ A/pA[T1, T2] is not the zero polynomial and satisfies

F (π)(π(f), π(g)) = π(F (f, g)) = 0. This shows that any two elements of B/pB are
algebraically dependent over A/pA, so d ≤ 1.

It follows that the algebraic closure of A/pA in B/pB is ker(D/p). �

2.23. Proposition. Let B be a UFD containing Q, D ∈ lnd(B) and A = kerD. Suppose
that some nonzero element of A∩D(B) is a product of prime elements p of A satisfying:

A/pA is algebraically closed in B/pB.

Then B = A[1].

Proof. By 2.20, we have D = αD0 for some α ∈ A\{0} and some irreducible D0 ∈ lnd(B).
Clearly, kerD0 = A and D0 satisfies the hypothesis of the proposition. So, to prove the

proposition, we may assume that D is irreducible. With this assumption, we show that
D has a slice. Let E ⊂ B be the set of elements s ∈ B which satisfy Ds ∈ A \ {0} and:

Ds is a product of prime elements p of A such that A/pA is algebraically closed in B/pB.
By assumption, we have E 6= ∅. Given s ∈ E, write Ds = p1 · · · pn where each pi is a
prime element of A; then s 7→ n is a well-defined map ` : E → N and it suffices to show

that `(s) = 0 for some s ∈ E. Consider s ∈ E such that `(s) > 0, write Ds = p1 · · · pn as
before, let p = pn and note that s + pB belongs to the kernel of D/p : B/pB → B/pB.
Since A/pA is algebraically closed in B/pB, 2.22 gives ker(D/p) = A/pA, so there exists

a ∈ A such that s− a ∈ pB; define s1 = (s− a)/p, then s1 ∈ B and Ds1 = p1 · · ·pn−1, so
s1 ∈ E and `(s1) < `(s). Hence, there exists s′ ∈ E such that `(s′) = 0, i.e., Ds′ ∈ B∗.

By 2.8, we get B = A[1]. �

3. Automorphisms

3.1. Lemma. Let B be a Q-algebra and f(T ) ∈ B[T ], where T is an indeterminate. If
{n ∈ Z | f(n) = 0} is an infinite set, then f(T ) = 0.
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Proof. By induction on degT (f). The result is trivial if degT (f) ≤ 0, so assume that
degT (f) > 0. Pick n ∈ Z such that f(n) = 0; since T − n ∈ B[T ] is a monic polynomial,
f(T ) = (T − n)g(T ) for some g(T ) ∈ B[T ] such that degT (g) < degT (f). If m ∈ Z \ {n}
is such that f(m) = 0, then (m−n)g(m) = 0 and m−n ∈ B∗, so g(m) = 0. So g(m) = 0
holds for infinitely many m ∈ Z and, by the inductive hypothesis, g(T ) = 0. It follows

that f(T ) = 0. �

The following is another consequence of 2.7.

3.2. Proposition. Let B be a Q-algebra, D ∈ lnd(B) and A = kerD. The map

eD : B → B, b 7−→∑
n∈N

Dn(b)
n!

is an automorphism of B as an A-algebra and satisfies A =
{
b ∈ B | eD(b) = b

}
. More-

over, if D1, D2 ∈ lnd(B) are such that D2 ◦ D1 = D1 ◦ D2, then D1 + D2 ∈ lnd(B)
and

(4) eD1+D2 = eD1 ◦ eD2 = eD2 ◦ eD1 .

Proof. Applying 2.7 with C = B and γ = 1, we obtain that eD : B → B is a homomor-
phism of A-algebras, which is part of the assertion. We begin by proving equation (4).
Consider D1, D2 ∈ lnd(B) such that D2 ◦D1 = D1 ◦D2. By 2.3, D1 + D2 ∈ lnd(B) so

it makes sense to consider the ring homomorphism eD1+D2 : B → B. If b ∈ B,

(eD1 ◦ eD2)(b) = eD1

(∑
j∈N

Dj
2(b)

j!

)
=
∑

j∈N

eD1

(
Dj

2(b)
)

j!
=
∑

j∈N
1
j!

(∑
i∈N

Di
1

(
Dj

2(b)
)

i!

)

=
∑

i,j∈N

(Di
1◦D

j
2)(b)

i!j!
=
∑

n∈N
1
n!

∑
i+j=n

(
n
i

)
(Di

1 ◦Dj
2)(b).

Since D2 ◦D1 = D1 ◦D2, we have (D1 +D2)n =
∑

i+j=n

(
n
i

)
Di

1 ◦Dj
2 for each n ∈ N and

consequently
(eD1 ◦ eD2)(b) =

∑
n∈N

1
n!

(D1 +D2)
n(b) = eD1+D2(b).

So eD1 ◦ eD2 = eD1+D2, which proves equation (4).
Consider D ∈ lnd(B) and let A = ker(D). Since (−D) ◦D = D ◦ (−D), equation (4)

gives eD ◦ e−D = e−D ◦ eD = e0 = idB, so eD is an A-automorphism of B.
There remains to prove that A =

{
b ∈ B | eD(b) = b

}
, where “⊆” is clear. Consider

b ∈ B such that eD(b) = b. Then for every integer n > 0 we have

b = (eD)n(b) = enD(b) =
∑∞

j=0
1
j!

(nD)j(b) =
∑∞

j=0
1
j!
Dj(b)nj = b + f(n),

where we define f(T ) ∈ B[T ] by f(T ) =
∑∞

j=1
1
j!
Dj(b)T j. By 3.1 we have f(T ) = 0, so in

particular D(b) = 0. �

3.3. Lemma. Given rings Q ≤ k ≤ B, consider the subgroup 〈E〉 of Autk(B) generated
by the set E =

{
eD
∣∣ D ∈ lndk(B)

}
. Then 〈E〉 is a normal subgroup of Autk(B).

Proof. If θ ∈ Autk(B) and D ∈ lndk(B), then θ−1 ◦D ◦ θ ∈ Derk(B) and (θ−1 ◦D ◦ θ)n =

θ−1 ◦Dn ◦ θ, so θ−1 ◦D ◦ θ ∈ lndk(B). It is easily verified that θ−1 ◦ eD ◦ θ = eθ
−1◦D◦θ, so

θ−1Eθ ⊆ E holds for all θ ∈ Autk(B). It follows that 〈E〉C Autk(B). �
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Exercise 3.1. Let B be a domain containing Q, let D ∈ lnd(B) and consider eD : B →
B. Show that if k is any field contained in B then eD is a k-automorphism of B.

Exercise 3.2. With B and D as in 2.6, consider eD : B → B. Note that eD is a
k-automorphism of B. Compute eD(X), eD(Y ) and eD(Z).

Exercise 3.3. Consider rings Q ≤ k ≤ B and let D ∈ lndk(B). Show that λ 7→ eλD is
a group homomorphism (k,+)→ Autk(B) with kernel {λ ∈ k | λD = 0}.

4. Ga-actions

The simple minded viewpoint

4.1. Definition. Let k be an algebraically closed field of characteristic zero. Then the
symbol Ga(k) denotes the group (k,+) viewed as an algebraic group. If X is a k-variety,

an algebraic action of Ga(k) on X is a morphism α : k×X → X which satisfies:

(1) α(0, x) = x for all x ∈ X
(2) α(a+ b, x) = α(a, α(b, x)) for all a, b ∈ k and x ∈ X.

In other words, an action is a morphism α : k×X → X satisfying:

(1+2) The map a 7→ α(a, ) is a group homomorphism (k,+)→ Autk(X).

4.2. Let k be an algebraically closed field of characteristic zero and B a k-algebra. We

claim that there is a bijection

(5) lndk(B) −→ set of actions of Ga(k) on Spec(B).

Indeed, fix D ∈ lndk(B); then (exercise 3.3) we have the group homomorphism

(k,+) −→ Autk(B), λ 7−→ eλD;

applying the functor Spec, we obtain the group homomorphism

(k,+) −→ Autk(SpecB), λ 7−→ Spec(eλD).

To conclude that we have an action, there remains to verify that the map

α : k× SpecB −→ SpecB, (λ, x) 7−→ (Spec eλD)(x)

is a morphism in the sense of algebraic geometry. Note that we may identify k× SpecB
with Spec

(
k[T ]⊗k B

)
= Spec(B[T ]) where T is an indeterminate. By 2.7, D determines

the homomorphism of k-algebras ξ : B → B[T ], ξ(b) =
∑

j∈N
Djb
j!
T j, and one can verify

that Spec(ξ) = α; so α is a morphism.
This shows that (5) is a well-defined map. The fact that it is bijective will be shown in

4.12, below.

4.3. Example. Let B = C[X, Y, Z] = C[3] and D = X ∂
∂Y

+ (Y 2 + XY ) ∂
∂Z
∈ lndC(B).

Then D determines an action α : C× C3 → C3 which we now compute. We have

eλD(Z) =
∑∞

n=0
(λD)n(Z)

n!
=
∑∞

n=0
λn

n!
Dn(Z)

= Z + λ(Y 2 +XY ) +
λ2

2
(2XY +X2) +

λ3

6
(2X2),
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and similarly eλD(X) = X and eλD(Y ) = Y + (λD)(Y ) = Y + λX. So, given λ ∈ C and
(x, y, z) ∈ C3,

α :
(
λ, (x, y, z)

)
7−→

(
x, y + λx, z + λ(y2 + xy) +

λ2

2
(2xy + x2) +

λ3

3
x2
)
.

4.4. If a group G acts on a ring B,

G× B −→ B, (g, b) 7−→ gb,

then one defines the ring of invariants BG = {b ∈ B | ∀g∈G gb = b}. In the situation

described in 4.2, we fix D ∈ lndk(B) and we let the group Ga = (k,+) act on the
k-algebra B,

Ga(k)×B −→ B, (λ, b) 7−→ eλD(b).

For any b ∈ B we have

b ∈ BGa ⇐⇒ ∀λ∈k e
λD(b) = b

3.2⇐⇒ ∀λ∈k b ∈ ker(λD) ⇐⇒ b ∈ ker(D),

so BGa = ker(D). Note that this is a genuine equality, not just an isomorphism.

Next, we describe the fixed points of a Ga-action on Spec(B).

4.5. Proposition. Let Q ≤ k ≤ B be rings, let D ∈ lndk(B) and let m be a maximal
ideal of B. Then tfae:

(1) For all λ ∈ k, eλD(m) = m

(2) m ⊇ D(B).

Proof. Suppose that (2) holds. Given λ ∈ k and b ∈ m, we have Dj(b) ∈ m for all

j ∈ N, so eλD(b) =
∑∞

j=0
Dj(b)
j!
λj ∈ m; this shows that eλD(m) ⊆ m, and since eλD is an

automorphism we must have eλD(m) = m. So (2) implies (1).

Conversely, suppose that (1) holds. The first step is to prove that

(6) D(m) ⊆ m.

Let b ∈ m. Define f(T ) =
∑∞

j=0
Dj(b)
j!
T j ∈ B[T ] and note that f(λ) = eλD(b) for all

λ ∈ k. Since (1) holds, we have f(λ) ∈ m for all λ ∈ k, so in particular this holds for
all λ ∈ Q. Consider the field κ = B/m, the canonical epimorphism π : B → κ and the

polynomial f (π) ∈ κ[T ]. Then Q ⊆ κ and f (π)(λ) = 0 for all λ ∈ Q; so f (π) = 0, i.e., all
coefficients of f(T ) belong to m. In particular D(b) ∈ m, which proves (6).

By (6), δ(b + m) = D(b) + m is a well-defined locally nilpotent derivation δ : κ → κ.

By 2.15, δ = 0; this means that D(B) ⊆ m, i.e., (2) holds. �

In view of 4.5, the following is natural:

4.6. Definition. Let B be a ring and D ∈ lnd(B). The elements of the set

Fix(D) = {p ∈ Spec(B) | p ⊇ D(B)}
are called the fixed points of D. Note that Fix(D) is a closed subset of Spec(B).
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The rigorous approach

We prove that (5) is a bijective map in a more general setting, i.e., when k is any
Q-algebra. Some parts of the following discussion are even valid for any ring k.

4.7. Definition. For an arbitrary ring k, one defines the group scheme Ga(k) as follows.
Let Ga(k) = Ga = Spec(k[T ]) as a scheme over k, where T is an indeterminate, and let

the group operation be the morphism

Ga
µ←− Ga ×Ga

which corresponds to the k-homomorphism

k[T ] −→ k[X, Y ]
T 7−→ X + Y.

Remark. We write Ga ×Ga as an abbreviation of Ga ×Spec k Ga, the fibered product over
Spec(k). The same remark applies to all products below.

4.8. Definition. Let k ≤ B be rings and let X = SpecB. An algebraic action of Ga(k)
on X (or simply a Ga-action on X) is a morphism over k

α : Ga(k)×X → X

satisfying the following two conditions:

(1) The composition X
ε−→ Ga × X α−→ X is 1X , where ε is defined as follows. Let

ev0 : B[T ]→ B be the B-homomorphism which maps T to 0; then ε = Spec(ev0).

(2) The diagram:

Ga ×Ga ×X
1Ga×α−−−−→ Ga ×X

µ×1X

y
yα

Ga ×X α−−−→ X
is commutative.

4.9. Definition. Let B be a ring. Given a ring homomorphism ϕ : B → B[T ] and an

element h of B[X, Y ], let ϕh : B[X, Y ] → B[X, Y ] be the unique ring homomorphism
satisfying ϕh(X) = X and ϕh(Y ) = Y and making the diagram

B[X, Y ]
ϕh

−−−→ B[X, Y ]xν
xevh

B −−−→
ϕ

B[T ]

commute, where evh is the B-homomorphism mapping T on h and ν is the inclusion map.

4.10. Proposition. Let k be a ring, B a k-algebra and ϕ : B → B[T ] a k-homomorphism.

Then the following are equivalent.

(1) Spec(ϕ) : Ga(k)× SpecB → SpecB is an action.

(2) ϕ0 = idB[X,Y ] and ϕX+Y = ϕY ◦ ϕX .
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(3) The assignment a 7→ ϕa gives a group homomorphism from (k[X, Y ],+) to
Autk[X,Y ]B[X, Y ].

Proof. Let ϕ : B → B[T ] be a k-homomorphism and Spec(ϕ) : Ga(k)× SpecB → SpecB
the corresponding morphism. Condition (1) of 4.8 is equivalent to the composition

B
ϕ−→ B[T ]

ev0−→ B

being the identity of B, which is equivalent to ϕ0 = idB[X,Y ].
On the other hand, condition (2) of 4.8 is equivalent to the diagram

(7)

B[X, Y ]
ψ←−−− B[T ]

evX+Y

x
xϕ

B[T ] ←−−−
ϕ

B

being commutative, where evX+Y is the B-homomorphism which maps T to X + Y and
where ψ is defined by ψ(T ) = X and, for b ∈ B, ψ(b) = ϕY (b).

Note that the composite map

B[T ]
evX−→ B[X, Y ]

ϕY

−→ B[X, Y ]

maps T to X and, for each b ∈ B, b to ϕY (b). So ϕY ◦ evX = ψ. Consequently,

(8) ψ ◦ ϕ = ϕY ◦ evX ◦ϕ = ϕY ◦ ϕX ◦ ν,
where ν : B ↪→ B[X, Y ] is the inclusion homomorphism. On the other hand,

(9) evX+Y ◦ϕ = ϕX+Y ◦ ν
by definition of ϕX+Y . By (8) and (9), commutativity of diagram (7) is equivalent to

(10) ϕX+Y ◦ ν = ϕY ◦ ϕX ◦ ν.
Since ϕX+Y (resp. ϕY ◦ ϕX) maps X to X and Y to Y , equation (10) is equivalent to

ϕX+Y = ϕY ◦ ϕX .
This proves the equivalence of the first two conditions, in the statement of the propo-

sition. The implication (3 =⇒ 2) being obvious, there remains only to show that

(2 =⇒ 3). So assume that (2) holds.
We first show that, given u, v ∈ k[X, Y ], ϕu+v = ϕv ◦ ϕu. Since ϕu+v (resp. ϕv ◦ ϕu)

maps X on X and Y on Y , it’s enough to show that ϕu+v(b) = (ϕv ◦ϕu)(b) for all b ∈ B.

Fix b ∈ B and write
ϕ(b) =

∑

i∈N

biT
i

and, for each i ∈ N,

ϕ(bi) =
∑

j∈N

bijT
j.
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Also, let E : B[X, Y ] → B[X, Y ] be the B-homomorphism satisfying E(X) = u and
E(Y ) = v. Since ϕv is a k[X, Y ]-homomorphism, we have ϕv(u) = u and this allows us
to write

ϕv(ϕu(b)) = ϕv

(
∑

i∈N

biu
i

)
=
∑

i∈N

ϕv(bi)u
i =

∑

i∈N

∑

j∈N

bijv
jui.

On the other hand,

ϕY (ϕX(b)) = ϕY

(
∑

i∈N

biX
i

)
=
∑

i∈N

ϕY (bi)X
i =

∑

i∈N

∑

j∈N

bijY
jX i,

so we have

ϕv(ϕu(b)) = E
(
(ϕY ◦ ϕX)(b)

)
= E

(
ϕX+Y (b)

)

= E

(
∑

n∈N

bn(X + Y )n

)
=
∑

n∈N

bn(u+ v)n = ϕu+v(b).

Hence, ϕu+v = ϕv ◦ ϕu. Since (2) is assumed to hold, we also have ϕ0 = idB[X,Y ]. It

follows that, for each u ∈ k[X, Y ], ϕu ◦ ϕ−u = idB[X,Y ] = ϕ−u ◦ ϕu, which shows that
ϕu ∈ Autk[X,Y ]B[X, Y ]. �

4.11. Assume that k is a Q-algebra and let B be a k-algebra. We show that the concept
of aGa(k)-action on SpecB is equivalent to that of a locally nilpotent k-derivation B → B.

By 4.10, ϕ 7→ Spec(ϕ) is a bijection from

Σ
def
=
{
ϕ ∈ Homk(B,B[T ]) | ϕ0 = idB[X,Y ] and ϕX+Y = ϕY ◦ ϕX

}

to the set of Ga(k)-actions on SpecB. We now proceed to define bijections Σ→ lndk(B)
and lndk(B)→ Σ which are inverse of each other.

4.11.1. For this part, we may let k be any ring. Given ϕ ∈ Σ, let Dϕ : B → B be the
composition

B
ϕ−→ B[T ]

d/dT−→ B[T ]
ev0−→ B,

where d/dT is the usual T -derivative. We show that Dϕ ∈ lndk(B). Begin by observing
that ϕ satisfies

(11) ev0 ◦ϕ = idB,

since this is equivalent to ϕ0 = idB[X,Y ], which holds by assumption.

Clearly, Dϕ preserves addition and, given x, y ∈ B,

Dϕ(xy) = ev0

(
d

dT
(ϕ(xy))

)
= ev0

(
d

dT
(ϕ(x)ϕ(y))

)

= ev0

(
d

dT
(ϕ(x)) · ϕ(y) + ϕ(x) · d

dT
(ϕ(y))

)

= ev0

(
d

dT
(ϕ(x))

)
ev0(ϕ(y)) + ev0(ϕ(x)) ev0

(
d

dT
(ϕ(y))

)
(11)
= Dϕ(x)y + xDϕ(y).
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Thus, Dϕ ∈ Derk(B). Next, we claim that the diagram

(12)

B[T ]
d/dT−−−→ B[T ]xϕ

xϕ

B
Dϕ−−−→ B

is commutative. To see this, consider b ∈ B and write

ϕ(b) =
∑

i∈N

biT
i ∈ B[T ].

Then

∑

i∈N

ϕY (bi)X
i = ϕY

(
∑

i∈N

biX
i

)
= ϕY (ϕX(b)) = ϕX+Y (b) =

∑

n∈N

bn(X + Y )n

=
∑

n∈N

bn
∑

i+j=n

(
n

i

)
X iY j =

∑

i∈N

(
∑

j∈N

bi+j

(
i+ j

i

)
Y j

)
X i

and consequently

(13) ϕ(bi) =
∑

j∈N

bi+j

(
i+ j

i

)
T j (for all i ∈ N).

On the other hand, we have Dϕ(b) = b1 by definition of Dϕ, so

ϕ(Dϕ(b)) = ϕ(b1)
(13)
=
∑

i∈N

bi+1(i+ 1)T i =
d

dT

∑

i∈N

biT
i =

d

dT

(
ϕ(b)

)
,

which shows that (12) is a commutative diagram. It follows that, for each n ∈ N,

(14)

B[T ]
(d/dT )n

−−−−→ B[T ]xϕ
xϕ

B
Dn

ϕ−−−→ B
is commutative. Since d/dT is locally nilpotent and ϕ is injective (by (11)), Dϕ is locally
nilpotent. Thus we have a well-defined map

Σ −→ lndk(B)
ϕ 7−→ Dϕ.

4.11.2. Assume that k is a Q-algebra. Given D ∈ lndk(B), consider the map

ϕ : B −→ B[T ]

b 7−→
∑

n∈N

Dn(b)
n!

T n

and note that ϕ is a homomorphism of k-algebras (see 2.7). In order to show that ϕ ∈ Σ,
consider ∆ : B[X, Y ]→ B[X, Y ] defined by ∆(f) = f (D). Clearly,

∆ ∈ lndk[X,Y ]B[X, Y ].
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For each h ∈ k[X, Y ], we have h ∈ ker ∆ and consequently h∆ ∈ lndk[X,Y ]B[X, Y ]. By
3.2, we may consider eh∆ ∈ Autk[X,Y ]B[X, Y ], and in fact we claim that

(15) eh∆ = ϕh : B[X, Y ]→ B[X, Y ].

To show this, we have to verify that eh∆ satisfies the definition of ϕh, i.e., the following

three conditions: (i) eh∆(X) = X; (ii) eh∆(Y ) = Y ; and (iii) the diagram

(16)

B[X, Y ]
eh∆

−−−→ B[X, Y ]xν
xevh

B −−−→
ϕ

B[T ]

is commutative. Now (i) and (ii) are trivial and, for each b ∈ B,

(eh∆◦ν)(b) = eh∆(b) =
∑

n∈N

(h∆)n(b)

n!
=
∑

n∈N

Dn(b)

n!
hn = evh

(
∑

n∈N

Dn(b)

n!
T n

)
= evh(ϕ(b)),

so (16) commutes and (15) holds.
So ϕ0 = e0 = idB[X,Y ] and 3.2 implies

ϕX+Y = eX∆+Y∆ = eY∆ ◦ eX∆ = ϕY ◦ ϕX

because (X∆) ◦ (Y∆) = (Y∆) ◦ (X∆). So ϕ ∈ Σ.

4.11.3. We show that the maps lndk B
4.11.2−→ Σ and Σ

4.11.1−→ lndk B are inverse of each
other.

If D ∈ lndkB then define ϕ : B → B[T ] as in 4.11.2; then Dϕ (defined as in 4.11.1) is
immediately seen to be equal to D.

Conversely, let ϕ ∈ Σ, define Dϕ as in 4.11.1 and let Φ : B → B[T ] be the map

Φ(b) =
∑

n∈N

Dn
ϕ(b)

n!
T n.

To verify that Φ = ϕ, consider b ∈ B and write

ϕ(b) =
∑

n∈N

bnT
n.

Since ϕ ∈ Σ, diagram (14) is commutative (for all n ∈ N) and in particular the constant
term of ( d

d T
)n
(
ϕ(b)

)
is equal to that of ϕ

(
Dn
ϕ(b)

)
. In other words we have n! bn = Dn

ϕ(b),

so bn =
Dn

ϕ(b)

n!
(for all n ∈ N) and

ϕ(b) =
∑

n∈N

Dn
ϕ(b)

n!
T n = Φ(b).

Thus Φ = ϕ, which means that the composition Σ→ lndk B → Σ is idΣ.

Proposition 4.10 and paragraph 4.11 prove the following:
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4.12. Theorem. Let k be a Q-algebra and B a k-algebra. Given D ∈ lndkB, let ϕ : B →
B[T ] be the k-homomorphism defined in 4.11.2 and let αD = Spec(ϕ) : Ga(k)×SpecB →
SpecB. Then

lndk B −→ set of Ga(k)-actions on SpecB
D 7−→ αD

is a well-defined bijection.

5. Variables and coordinate systems

5.1. Proposition. Let R be any ring and consider the polynomial algebra R[X1, . . . , Xn]
in n variables over R. If f1, . . . , fn ∈ R[X1, . . . , Xn] satisfy R[f1, . . . , fn] = R[X1, . . . , Xn],

then f1, . . . , fn are algebraically independent over R.

The significance of 5.1 is that (f1, . . . , fn) can then be used as a new set of variables
for the polynomial ring, i.e., it is as good as (X1, . . . , Xn). For the proof of 5.1 we need:

5.1.1. Let B be a noetherian ring and ϕ : B → B a surjective ring homomorphism. Then
ϕ is an automorphism of B.

Proof. Suppose that ϕ is not injective and pick y ∈ kerϕ, y 6= 0. If n is any positive
integer then ϕn : B → B is surjective, so there exists xn ∈ B such that ϕn(xn) = y; then
ϕn(xn) 6= 0 and ϕn+1(xn) = 0, which shows that all inclusions are strict in the infinite

sequence of ideals ker(ϕ) ⊂ ker(ϕ2) ⊂ ker(ϕ3) ⊂ · · · . This contradicts the assumption
that B is noetherian. �

We prove the following statement, which is equivalent to 5.1.

5.1.2. Let R be any ring and consider the polynomial algebra R[X1, . . . , Xn] in n variables
over R. If ϕ : R[X1, . . . , Xn] → R[X1, . . . , Xn] is a surjective homomorphism of R-

algebras, then ϕ is an automorphism of R[X1, . . . , Xn].

Proof. Let h ∈ kerϕ; we show that h = 0. Write B = R[X1, . . . , Xn]. Choose g1, . . . , gn ∈
B such that ϕ(gi) = Xi. There exists a finite subset of R which contains all coefficients of

ϕ(Xi) and gi for 1 ≤ i ≤ n, and all coefficients of h. Thus there exists a noetherian ring
R0 ≤ R such that ϕ(Xi), gi and h all belong to B0 = R0[X1, . . . , Xn]. Then ϕ restricts to a

surjective ring homomorphism ϕ0 : B0 → B0 satisfying ϕ0(h) = 0. Since B0 is noetherian,
ϕ0 is injective by 5.1.1; so h = 0. �

5.2. Definition. Suppose that R ≤ B are rings and B = R[n]. A variable of B over

R is an element f ∈ B satisfying B = R[f, f2, . . . , fn] for some f2, . . . , fn ∈ B. A
coordinate system of B over R is an ordered n-tuple (f1, . . . , fn) of elements of B satisfying

B = R[f1, . . . , fn].

Exercise 5.1. Let k be a field, B = k[X, Y ] = k[2], R1 = k[X] and R2 = k[Y ] and note

that B = R
[1]
1 and B = R

[1]
2 . Let f = X + Y 2 ∈ B. Show that f is a variable of B over

R2 but not a variable of B over R1.
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5.3. Definition. Suppose that B is a polynomial ring over some field k. Then, by a
variable of B, we mean a variable of B over k; by a coordinate system of B, we mean
a coordinate system of B over k. This makes sense because k = {0} ∪ B∗ is uniquely

determined by B, i.e., there is only one field over which B is a polynomial ring.

Exercise 5.2. Let k be a field, B = k[T,X, Y ] = k[3] and R = k[T ] and note that

B = R[2]. Let f = TX + Y 2 ∈ B. Show that f is not a variable of B over R, but that it
is a variable of k(T )[X, Y ].

6. R-derivations of R[X, Y ]

In this section R is a domain containing Q, B = R[X, Y ] = R[2] and K = Frac(R). To
what extent can we describe lndR(B)? (Keep in mind paragraph 2.21.)

Recall from 1.1 that, given P ∈ B, we may define an R-derivation ∆P : B → B by

∆P = −PY
∂

∂X
+ PX

∂

∂Y
, or equivalently ∆P (h) =

∣∣∣∣
PX PY
hX hY

∣∣∣∣ for all h ∈ B.

Then we have R[P ] ≤ ker(∆P ).

Exercise 6.1. Show that for any P1, P2 ∈ B, ∆P1
= ∆P2

⇔ P1 − P2 ∈ R.

Exercise 6.2. Let D = ∂
∂Y

+Y ∂
∂X

: Z[X, Y ]→ Z[X, Y ]. Show that D is locally nilpotent

but is not of the form ∆P with P ∈ Z[X, Y ]. So, in 6.2 (see below), the hypothesis that
R contains Q is needed.

6.1. Definition. An element P of B is generically univariate if the following equivalent

conditions hold:

• P ∈ K[U ], for some variable U of K[X, Y ]
• there exists a coordinate system (U, V ) of K[X, Y ] such that P ∈ K[U ].

6.2. Lemma.

(1) klndR(B) = {B ∩K[U ] | U is a variable of K[X, Y ]}.
(2) For each A ∈ klndR(B), we have lndA(B) = {∆P | P ∈ A}.
(3) lndR(B) = {∆P | P ∈ B is generically univariate}.

Proof. Given 0 6= D ∈ lndR(B), consider the locally nilpotent derivation δ = S−1D :
K[X, Y ] → K[X, Y ], where S = R \ {0}. By Rentschler’s Theorem, there exists a
coordinate system (U, V ) of K[X, Y ] and f(U) ∈ K[U ] such that δ = f(U) ∂

∂V
. Let

F (U) ∈ K[U ] be such that F ′(U) = f(U) and a00 = 0, where F (U) =
∑

ij aijX
iY j

(aij ∈ K). Let λ =
∣∣ UX UY

VX VY

∣∣ ∈ K∗ and define P = λ−1F (U) ∈ K[X, Y ]. Then
∣∣ PX PY

UX UY

∣∣ = λ−1F ′(U)
∣∣ UX UY

UX UY

∣∣ = 0 = δ(U)

and
∣∣ PX PY

VX VY

∣∣ = λ−1F ′(U)
∣∣ UX UY

VX VY

∣∣ = f(U) = δ(V ),
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so δ(H) =
∣∣ PX PY

HX HY

∣∣ for any H ∈ K[X, Y ]. In particular PX = D(Y ) and PY = −D(X),
so PX , PY ∈ B; together with Q ⊂ R and a00 = 0, this gives P ∈ B and consequently

D = ∆P , proving “⊆” in each of assertions (3) and (2). As kerD = B∩ker δ = B∩K[U ],
“⊆” of (1) is also proved.

Next, let U be any variable of K[X, Y ] and let P ∈ B ∩ K[U ], P 6∈ R; we show that
∆P : B → B is locally nilpotent and that ker ∆P = B ∩K[U ]. This will imply “⊇” in all
three assertions.

Write P = Φ(U) where Φ is a polynomial in one variable with coefficients in K; choose V
such that (U, V ) is a coordinate system of K[X, Y ]. Consider the K-derivation δ = S−1∆P

of K[X, Y ], where S = R \ {0}. For any H ∈ K[X, Y ] we have δ(H) =
∣∣ PX PY

HX HY

∣∣ =

Φ′(U)
∣∣ UX UY

HX HY

∣∣, so δ(U) = 0 and δ(V ) ∈ K[U ]; thus δ is locally nilpotent and so is its
restriction ∆P . As P 6∈ R, we have Φ′(U) 6= 0 and hence δ 6= 0. Note that K[U ] ⊆ ker δ
and, by Rentschler’s Theorem, K[X, Y ] = (ker δ)[1]; as K[X, Y ] = K[U ][1], we get ker δ =

K[U ] and consequently ker ∆P = B ∩ ker δ = B ∩K[U ]. �

Comments. Result 6.2 is a partial solution to problems (I) and (II) of 2.21, but not a

very satisfactory solution. For instance, consider an element A of klndR(B). Then 6.2
does not say what are the irreducible derivations in lndA(B) (this is a hard question, in
view of exercises 2.16 and 2.17); neither does it describe A a an R-algebra. Regarding

this last question, we know that A has transcendence degree 1 over R (by 2.10 we have
trdegA(B) = 1, so trdegR(A) = 1). Is A always finitely generated as an R-algebra? Is
A = R[1] always true?

• By 6.3, A is not necessarely a finitely generated R-algebra.

• By 6.5, if R is a UFD then A = R[1].
• If we assume thatR is a noetherian normal domain containing Q then Bhatwadekar

and Dutta [2] give a complete description of A. In particular, they show that A is

not necessarely a finitely generated R-algebra (even with R normal).

6.3. Example. Let R be the subring C[T 2, T 3] of C[T ] = C[1], let B = R[X, Y ] = R[2],
P = T 2X + T 3Y ∈ B and consider ∆P : B → B. Note that P is a variable of K[X, Y ],

where K = Frac(R) = C(T ), so by 6.2 we have ∆P ∈ lndR(B) and ker ∆P = B ∩K[P ].
We show that ker ∆P is not finitely generated as an R-algebra. (A different proof is given

in [1].)
Define an N2-grading on S = C[T,X, Y ] = C[3] by deg(T ) = (1, 0), deg(X) = (1, 1) and

deg(Y ) = (0, 1). Since B = C[T 2, T 3, X, Y ] where T 2, T 3, X, Y are homogeneous elements

of S it follows that B is a homogeneous subring of S, i.e., if b ∈ B then all homogeneous
components of b belong toB. So B is a graded ring, B = ⊕(i,j)∈N2B(i,j), and it is easy to see
that ∆P is a homogeneous derivation of B; consequently A = ker(∆P ) is a homogeneous

subring of B. The subring R[P ] of A is also homogeneous, because R[P ] = C[T 2, T 3, P ]
where T 2, T 3 and P are homogeneous. We claim:

(17) Each homogeneous element of R[P ] has the form λT iP j for some λ ∈ C

and (i, j) ∈ N2.
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In fact it is clear that each element of R[P ] is a finite sum of terms λT iP j. Since
deg(T iP j) = i(1, 0) + j(3, 1) is an injective function of (i, j), the claim (17) is clear.
Next we show:

(18) A is the C-vector space spanned by {T i(X + TY )j | i ≥ 2 and j ∈ N}.
Let V = SpanC {T i(X + TY )j | i ≥ 2 and j ∈ N}, then V ⊆ A is clear. Conversely, let h

be a homogeneous element of A; to prove (18), it suffices to show that h ∈ V . By 6.2 we
have A = B∩C(T )[P ] so f(T )h ∈ R[P ] for some f(T ) ∈ R\{0}. Then each homogeneous

component of f(T )h belongs to R[P ], so T kh ∈ R[P ] for some k ∈ N. By (17), we get
T kh = λT i1P j, for some λ ∈ C and (i1, j) ∈ N2, so h = λT i(X +TY )j for some i ∈ Z and
j ∈ N. Since h ∈ B, we have i ≥ 2 and consequently h ∈ V , which proves (18).

Finally, let gn = T 2(X+TY )n for each n ≥ 0 and note that gn is homogeneous of degree
(n+2, n). By (18) we have A = R[g1, g2, . . . ] and if A is a finitely generated R-algebra then
A = R[g1, . . . , gm] = C[T 3, g0, g1, . . . , gm] for some m. However, deg(gm+1) does not belong

to the semigroup generated by deg(T 3), deg(g0), . . . , deg(gm). So gm+1 6∈ R[g1, . . . , gm]
and A is not finitely generated. �

Exercise 6.3. Verify that deg(gm+1) 6∈ 〈 deg(T 3), deg(g0), . . . , deg(gm) 〉.

The case where R is a UFD

The following useful fact (6.4) was proved in [16] and [15], and is valid without assuming
that R has characteristic zero.

6.4. Let R and A be UFD’s satisfying R ≤ A ≤ R[n] for some n. If trdegR(A) = 1 then
A = R[1].

6.5. Proposition. Let R be a UFD of characteristic zero and B = R[X, Y ] = R[2]. If
A ∈ klndR(B), then A = R[1].

Proof. Since R is a UFD, so is B. Since B is a domain of characteristic zero and A ∈
klnd(B), A is factorially closed in B by 2.15; so exercise 2.6 implies that A is a UFD.
Hence R ≤ A ≤ B = R[2] are UFD’s. We have trdegA(B) = 1 by 2.10, so trdegR(A) = 1;

by 6.4, we conclude that A = R[1]. �

Remark. The MSc thesis [1] of Joost Berson contains the following result: Let R be a
UFD of characteristic zero, B = R[X, Y ] = R[2] and D ∈ DerR(B). If D 6= 0 then

kerD = R[P ] for some P ∈ B. (That is, the kernel is either R or R[1].)

6.6. Theorem. Let R be a UFD containing Q, B = R[X, Y ] = R[2] and K = FracR.

Consider the set

P = {P ∈ B | gcdB(PX , PY ) = 1 and P is a variable of K[X, Y ] } .
Then the following hold.

(1) For P ∈ B, tfae:
(a) P ∈ P

(b) ∆P : B → B is locally nilpotent and irreducible
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(c) R[P ] ∈ klndR(B).
Consequently, klndR(B) = { R[P ] | P ∈ P }.

(2) If R[P ] ∈ klndR(B), then lndR[P ](B) = {α∆P | α ∈ R[P ]}.
(3) lndR(B) = {α∆P | P ∈ P and α ∈ R[P ]}.

Proof. (1) Let P ∈ P. By 6.2, ∆P : B → B is locally nilpotent. If I is a principal ideal
of B such that ∆P (B) ⊆ I then PX = ∆P (Y ) and PY = −∆P (X) belong to I, so the gcd
condition implies that I = B; so ∆P is irreducible and we showed that (a) implies (b).

Suppose that (b) holds. By 6.5, ker ∆P = R[W ] for some W ∈ B. Thus P ∈ R[W ] and
we may write P = f(W ) with f(T ) ∈ R[T ], T an indeterminate. Now ∆P (Y ) = PX =
f ′(W )WX and ∆P (X) = −PY = −f ′(W )WY , so ∆P (B) ⊆ f ′(W )B; by irreducibility of

∆P , we get f ′(W ) ∈ B∗ = R∗. Consequently f(T ) = uT + r with u ∈ R∗ and r ∈ R, so
ker ∆P = R[W ] = R[P ] and (c) holds. Finally, suppose that (c) holds. Let S = R \ {0},
then S−1R[P ] = K[P ] belongs to klnd(K[X, Y ]) by exercise 2.1, so Rentschler’s Theorem
implies that P is a variable of K[X, Y ]. Thus PX and PY are relatively prime in K[X, Y ],
which implies that r ∈ R \ {0} where we define r = gcdB(PX , PY ). Then, if c ∈ R is

the constant term of P ∈ R[X, Y ], r divides every coefficient of P − c (we are using
Q ⊆ R here). So P − c = rP ′ for some P ′ ∈ B. As R[P ] is factorially closed in B and
rP ′ ∈ R[P ] \ {0}, we get P ′ ∈ R[P ]. Hence R[P ] = R[P ′] and consequently r ∈ R∗ and

gcdB(PX , PY ) = 1. So (c) implies (a) and conditions (a–c) are therefore equivalent. Then
klndR(B) = { R[P ] | P ∈ P } is clear and assertion (1) is proved.

If R[P ] ∈ klndR(B) then, by (1), ∆P belongs to lndR[P ](B) and is irreducible. So (2)

follows from 2.20. Assertion (3) follows from (1) and (2). �

Exercise 6.4. Let R, B and P be as in 6.6.

(1) Show that {∆P | P ∈ P} is the set of irreducible elements of lndR(B).

(2) Show that if P ∈ P then ∆P (B) contains a nonzero element of R.

Exercise 6.5. Let k be a field of characteristic zero, B = k[X, Y, Z] = k[3] and define
D ∈ Derk(B) by DX = 0, DY = X and DZ = Y 2. Show that D is irreducible. With
R = k[X], verify that D ∈ lndR(B) and find P ∈ P such that D = ∆P . What is kerD ?

Exercise 6.6. Let R be the subring C[T 2, T 3] of C[T ] = C[1] and B = R[X, Y ] = R[2].
Consider the R-derivation ∆W : B → B where W = T 2(X + TY )3 ∈ B. Note that

W is generically univariate and hence ∆W is locally nilpotent by 6.2. Show that ∆W

is irreducible, and is not of the form α∆P where P ∈ B is a variable of K[X, Y ] and
α ∈ ker ∆W (where K = FracR = C(T )). Compare with part (3) of 6.6.

Variables and slices

We shall prove the following criterion for deciding if a polynomial is a variable:

6.7. Theorem. Let R be a UFD containing Q.
For an element P of B = R[X, Y ] = R[2], tfae:

(1) P is a variable of B over R.
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(2) ∆P : B → B is locally nilpotent and (PX , PY )B = B.

Before proving 6.7, we deduce:

6.8. Corollary. Let R be a UFD containing Q, B = R[2] and D ∈ lndR(B). Tfae:

(1) 1 belongs to the ideal of B generated by D(B)

(2) 1 ∈ D(B).

Proof. Suppose that (1) holds. In particular, D is an irreducible derivation so (ex. 6.4) for
some P ∈ P we have D = ∆P and kerD = R[P ]. Result 6.7 implies that P is a variable

of B over R, so B = R[P ][1] = (kerD)[1]; then exercise 2.15 implies that (2) holds. �

Remarks.

• Condition (1) of 6.8 states that D is fix-point-free (see 4.6) and (2) says that D has
a slice. So the claim is that if D is fix-point-free then it has a slice (the converse

is trivial).
• Results 6.7 and 6.8 are two ways to say the same thing: We obtained 6.8 as a

corollary of 6.7, but we could have done it the other way around.

• Both 6.7 and 6.8 remain valid when R is any Q-algebra (see [17]). We restrict
ourselves to the UFD case because the proof is considerably easier.

The proof of 6.7 requires some preliminaries.

6.9. Lemma. Consider rings Q ≤ R ≤ S and R[X, Y ] ≤ S[X, Y ], where X, Y are
indeterminates over S. If P ∈ B = R[X, Y ] satisfies (PX , PY )B = B, then B ∩ S[P ] =
R[P ].

In fact we prove the following more general version (∆f is defined in 1.1 and (∆fB)
denotes the ideal of B generated by ∆f (B)):

6.10. Lemma. Consider rings Q ≤ R ≤ S and R[X1, . . . , Xn] ≤ S[X1, . . . , Xn], where
X1, . . . , Xn are indeterminates over S. Write B = R[X1, . . . , Xn]. If f = (f1, . . . , fn−1) ∈
Bn−1 satisfies (∆fB) = B, then B ∩ S[f1, . . . , fn−1] = R[f1, . . . , fn−1].

Proof. Since the ideal (∆fB) is generated by ∆f(X1), . . . ,∆f (Xn), the assumption (∆fB) =
B implies that there exist b1, . . . , bn ∈ B such that

∑n
i=1 bi∆f (Xi) = 1. Then the matrix

M =




(f1)X1
. . . (f1)Xn

...
...

(fn−1)X1
. . . (fn−1)Xn

b1 . . . bn




has all its entries in B and has determinant 1; so M−1 exists and has all its entries in B.

We claim that the S-homomorphism evf : S[T1, . . . , Tn−1] → S[X1, . . . , Xn] defined by
Φ(T ) 7→ Φ(f) satisfies

(19) ev−1
f (B) = R[T1, . . . , Tn−1].
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Suppose that (19) is false and choose Φ(T ) ∈ S[T1, . . . , Tn−1] \R[T1, . . . , Tn−1] of minimal
total degree such that Φ(f) ∈ B. The chain rule gives

(
Φ(f)X1

· · · Φ(f)Xn

)
=
(
ΦT1

(f) · · · ΦTn−1
(f)
)



(f1)X1
. . . (f1)Xn

...
...

(fn−1)X1
. . . (fn−1)Xn




=
(
ΦT1

(f) · · · ΦTn−1
(f) 0

)
M,

so:

(20)
(
Φ(f)X1

· · · Φ(f)Xn

)
M−1 =

(
ΦT1

(f) · · · ΦTn−1
(f) 0

)
.

Since Φ(f) belongs to B, so does Φ(f)Xj
for every j. So the left hand side of (20) has

entries in B and consequently ΦT1
(f), . . . ,ΦTn−1

(f) ∈ B. By minimality of the degree of

Φ, we must have
ΦT1

(T ), . . . ,ΦTn−1
(T ) ∈ R[T1, . . . , Tn−1].

Since Q ⊆ R, it follows that Φ(T ) = λ+Ψ(T ) for some λ ∈ S and Ψ(T ) ∈ R[T1, . . . , Tn−1].
Then λ = Φ(f) − Ψ(f) ∈ B, i.e., λ ∈ R. Consequently Φ(T ) ∈ R[T1, . . . , Tn−1], a

contradiction. So (19) is true and the desired result follows. �

6.11. Lemma. Let R be a domain containing Q and P ∈ B = R[X, Y ] = R[2]. If

∆P : B → B is locally nilpotent and (PX , PY )B = B,

then ker ∆P = R[P ] and there exists Q ∈ B such that ∆P (Q) ∈ R \ {0}.

Proof. Let K = FracR and S = R\{0}; consider the locally nilpotent derivation S−1∆P of
K[X, Y ]. By Rentschler’s Theorem, ker(S−1∆P ) = K[V ] for some variable V of K[X, Y ];
then the conditions P ∈ K[V ] and 1 ∈ (PX , PY ) imply that K[P ] = K[V ]; so P is

a variable of K[X, Y ] and we may choose Q ∈ B such that K[P,Q] = K[X, Y ]; then
B 3 ∆P (Q) =

∣∣ PX PY

QX QY

∣∣ ∈ K∗, so ∆P (Q) ∈ R \ {0}.
Note that R[X, Y ] ∩K[P ] = R[P ] by 6.9, so ker ∆P = B ∩ ker(S−1∆P ) = B ∩K[P ] =

R[P ] and we are done. �

Proof of 6.7. If (1) holds then ∆P is locally nilpotent by 6.2; also, there exists Q ∈
R[X, Y ] such that R[P,Q] = R[X, Y ] and any such Q satisfies

∣∣ PX PY

QX QY

∣∣ ∈ R∗. So (1)

implies (2).
Suppose that (2) holds; we deduce (1). By 6.11, we have:

ker ∆P = R[P ](21)

∆P (Q) ∈ R \ {0} for some Q ∈ B.(22)

We shall prove a condition stronger than (22), namely:

(23) ∆P (Q0) ∈ R∗ for some Q0 ∈ B.
Note that if (23) is true then 2.8 gives B = (ker ∆P )[1] = R[P ][1] and we are done. To
prove (23) we consider the “length function” ` : R \ {0} → N defined by `(p1 · · · pn) = n

for any product of prime elements p1, . . . , pn of R (and where `(u) = 0 if u ∈ R∗). Pick



27

Q ∈ B such that ∆P (Q) ∈ R \ {0}; if `
(
∆PQ

)
= 0 then we are done, so suppose that

`
(
∆PQ

)
> 0. Then there exists a prime element q of R which divides ∆P (Q) in R. Let

R = R/qR and let π : R[X, Y ] → R[X, Y ] be the unique extension of the canonical

homomorphism R → R which maps X 7→ X and Y 7→ Y . Let h = π(P ) ∈ R[X, Y ] and
consider ∆h : R[X, Y ]→ R[X, Y ]. We claim:

(24) ∆h is locally nilpotent and 1 belongs to the ideal (hX , hY ) of R[X, Y ].

Indeed, it is clear that π is surjective and that

(25)

R[X, Y ]
∆h−−−→ R[X, Y ]

π

x π

x

R[X, Y ]
∆P−−−→ R[X, Y ]

commutes, so ∆h is locally nilpotent; applying π to an equation aPX + bPY = 1 (a, b ∈ B)
gives π(a)hX + π(b)hY = 1, so 1 ∈ (hX , hY )R[X, Y ] and (24) holds. Moreover, R is a
domain which contains Q (because Q ≤ R). Applying 6.11 to h ∈ R[X, Y ] we conclude

that ker ∆h = R[h], or equivalently

(26) ker ∆h = π
(
R[P ]

)
.

It follows that π(Q) ∈ π
(
R[P ]

)
, because q divides ∆P (Q) in R and (25) commutes. So

there exists Φ(T ) ∈ R[T ] such that Q + Φ(P ) ∈ ker π = qB. Define Q′ = (Q + Φ(P ))/q;
then Q′ ∈ B and ∆P (Q′) = 1

q
∆P (Q) ∈ R \ {0}, so `

(
∆PQ

′
)
< `
(
∆PQ

)
. This argument

shows that there exists Q0 ∈ B such that `
(
∆PQ0

)
= 0, and this proves (23). �

Locally nilpotent derivations of k[n] of low rank

In this section we let B = k[n], where n ≥ 1 and k is a field of characteristic zero.

6.12. Definition. Let D : B → B be a k-derivation. The rank of D is the least r ∈
{0, 1, . . . , n} for which there exists a coordinate system (T1, . . . , Tn−r, X1, . . . , Xr) of B
satisfying

k[T1, . . . , Tn−r] ⊆ kerD.

Given such a coordinate system, we may write

D = f1(T,X)
∂

∂X1
+ · · ·+ fr(T,X)

∂

∂Xr

with fi(T,X) ∈ B = k[T1, . . . , Tn−r, X1, . . . , Xr] for all i. In this sense,

The rank of D is the least number of partial derivatives needed for expressing D.

The following claims are clear:

• rankD = 0 ⇐⇒ D = 0
• If two derivations have the same kernel then they have the same rank.
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6.13. Example. Let B = k[X, Y, Z] and D = ∂
∂X

+ ∂
∂Y

+ ∂
∂Z

: B → B. Since (X −Z, Y −
Z,Z) is a coordinate system of B and k[X − Z, Y − Z] ⊆ kerD, we have rankD ≤ 1.

Since D 6= 0, we conclude that rankD = 1. Writing (U, V,W ) = (X − Z, Y − Z,Z), we
have D = 0 ∂

∂U
+ 0 ∂

∂V
+ ∂

∂W
= ∂

∂W
. (Remark: ∂

∂W
6= ∂

∂Z
, even though W = Z.)

Exercise 6.7. Verify the following claims.

(1) rankD = 1 ⇐⇒ kerD = k[n−1] and B = (kerD)[1]

(2) rankD < n ⇐⇒ kerD contains a variable of B.

Exercise 6.8. Let B = k[X, Y, Z] = k[3] and define D ∈ lnd(B) by DX = 0, DY = X
and DZ = Y . Verify that D is an irreducible derivation which does not have a slice;

deduce that B is not (kerD)[1] (see ex. 2.15). Conclude that rankD = 2.

Remark. One can reformulate Rentschler’s Theorem as:

If D is a locally nilpotent derivation of k[X, Y ] = k[2], then rankD < 2.

However we will see later that if n > 2 then there exist locally nilpotent derivations of
k[n] of rank n.

6.14. Notation. Given a coordinate system γ = (T1, . . . , Tn−2, X, Y ) of B and an element
P ∈ B, define

∆γ
P = −PY ∂

∂X
+ PX

∂
∂Y

: B −→ B.

Note that ∆γ
P is a k[T1, . . . , Tn−2]-derivation of B and that k[T1, . . . , Tn−2, P ] ≤ ker ∆γ

P .

6.15. Corollary. For a k-derivation D 6= 0 of B = k[n], tfae:

(1) D is locally nilpotent and rankD ≤ 2

(2) D = α∆γ
P for some γ, P and α satisfying:

• γ = (T1, . . . , Tn−2, X, Y ) is a coordinate system of B
• P ∈ B satisfies gcdB(PX , PY ) = 1 and is a variable of k(T1, . . . , Tn−2)[X, Y ].
• α is a nonzero element of k[T1, . . . , Tn−2, P ].

Moreover, if the above two conditions hold then:

(3) kerD = k[T1, . . . , Tn−2, P ]

(4) ∆γ
P is an irreducible locally nilpotent derivation

(5) ∆γ
P (B) contains a nonzero element of k[T1, . . . , Tn−2].

Proof. Suppose that D satisfies condition (1). As rankD ≤ 2, there exists a coordinate

system γ = (T1, . . . , Tn−2, X, Y ) of B satisfying k[T1, . . . , Tn−2] ⊂ kerD. Define R =
k[T1, . . . , Tn−2] and note that this is a UFD containing Q; we have B = R[X, Y ] = R[2]

and D ∈ lndR(B), so 6.6 can be applied to this situation. It follows that (2) holds. The

other assertions are left to the reader. �

7. Preliminaries for section 8

The following facts are needed in the next section.
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7.1. Theorem (Miyanishi). Let k be a field of characteristic zero and B = k[3]. If
A ∈ klnd(B) then A = k[2].

The case k = C of 7.1 was proved by Miyanishi in [14]; it is not difficult to show that
the result remains valid if k is any field of characteristic zero.

For the next result, let k be a field of characteristic zero and B = k[X0, X1, X2] = k[3].
Recall that any f, g ∈ B determine a k-derivation

∆(f,g) =

∣∣∣∣
fX0

fX1
fX2

gX0
gX1

gX2
∂

∂X0

∂
∂X1

∂
∂X2

∣∣∣∣ : B → B

satisfying k[f, g] ⊆ ker ∆(f,g).

7.2. Theorem. Let k be a field of characteristic zero and B = k[X0, X1, X2] = k[3].
Let f, g ∈ B be such that k[f, g] ∈ klnd(B). Then the k-derivation ∆(f,g) : B → B

is irreducible, locally nilpotent and satisfies ker ∆(f,g) = k[f, g]. Consequently we have

lndA(B) =
{
α∆(f,g)

∣∣ α ∈ A
}
, where A = k[f, g].

Result 7.2 is Corollary 2.6 of [3]. The nontrivial claim in that result is the fact that
∆(f,g) is an irreducible derivation. Once this is known, the other assertions follow from
2.20.

7.3. Graded rings. Every graded ring considered in sections 7 and 8 is either Z-graded
or N-graded. Let R =

⊕
iRi be a graded ring.

(1) If x ∈ Ri \ {0} then we write deg x = i.

(2) A subring A of R is said to be homogeneous if A =
⊕

i(A∩Ri). If this is the case
then we set Ai = A ∩Ri and regard A =

⊕
iAi as a graded ring.

(3) If D : R → R is a derivation, we say that D is homogeneous if there exists an
integer n such that D(Ri) ⊆ Ri+n holds for all i; note that n is unique if D 6= 0;

we say that D is homogeneous of degree n. Observe that if D is homogeneous
then kerD is a homogeneous subring of R.

(4) If S is a multiplicatively closed subset of
⋃
i(Ri \{0}) then the localized ring S−1R

inherits a Z-grading in a natural way: If x ∈ Ri\{0} and s ∈ S then x/s is declared

to be homogeneous of degree deg x−deg s. If we write S−1R = R =
⊕

i∈Z Ri then
R0 is a subring of R, called the homogeneous localization of R with respect to S.

If S = {1, f, f 2, . . . } where f ∈ Ri \ {0} for some i, we write Rf = S−1R = R and
R(f) = R0.

Exercise 7.1. Let p, q be relatively prime positive integers and let k be any field. Define

an N-grading on R = k[X, Y ] = k[2] by declaring that R0 = k, X ∈ Rp and Y ∈ Rq.
Consider the ring R(XY ), i.e., the homogeneous localization of R with respect to the
multiplicative set {1, XY, (XY )2, . . . }. Show that R(XY ) = k[ξ, ξ−1] where ξ = Xq/Y p.

Also show that R(Y ) = k[ξ] = k[1] and that R(X) = k[ξ−1] = k[1].

The next two facts (7.4 and 7.5) are needed in the proof of 8.8:
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7.4. Lemma. Let R =
⊕

Rn be a Z-graded UFD satisfying:

For all n ∈ Z, if Rn 6= 0 then Rn ∩ R∗ 6= ∅.

Then R0 is a UFD.

7.5. Lemma. Let R =
⊕

Rn be a Z-graded domain and Q a homogeneous subring of R

satisfying:
For all n ∈ Z, if Rn 6= 0 then Qn ∩Q∗ 6= ∅.

Then tfae:

(1) There exists a homogeneous element v of R such that R = Q[v] = Q[1]

(2) R0 = (Q0)
[1].

Exercise 7.2. Prove 7.4 and 7.5.

The following is needed in the proof of 7.7.1:

7.6. Lemma. Let k be a field, A = k[r] (r ≥ 1) and let A = ⊕i∈NAi be a grading such
that A0 = k. If f1, . . . , fn are homogeneous elements of A satisfying k[f1, . . . , fn] = A,

then there is a subset {g1, . . . , gr} of {f1, . . . , fn} satisfying A = k[g1, . . . , gr].

Proof. Consider a subset {g1, . . . , gs} of {f1, . . . , fn} satisfying A = k[g1, . . . , gs] and

minimal with respect to this property (in particular, deg(gi) > 0 for all i). Let R =
k[T1, . . . , Ts] = k[s], with grading R = ⊕i∈NRi determined by R0 = k and deg(Ti) =
deg(gi). Then the surjective k-homomorphism e : R → A, e(ϕ) = ϕ(g1, . . . , gs), is homo-

geneous of degree zero. It suffices to show that the prime ideal p = ker e is zero. Assume
the contrary. Note that (T1, . . . , Ts) ⊇ p, i.e., the variety V (p) ⊆ As passes through
the origin. Since the origin is a smooth point (A is smooth over k), and since p is gener-

ated by its homogeneous elements, the jacobian condition implies that some homogeneous
ϕ ∈ p contains a term λTj (λ ∈ k∗). Since ϕ is homogeneous and deg(Ti) > 0 for all

i, ϕ − λTj ∈ k[T1, . . . , Tj−1, Tj+1, . . . Ts], so gj ∈ k[g1, . . . , gj−1, gj+1, . . . gs], contradicting
minimality of {g1, . . . , gs}. �

7.7. Fix a field k of characteristic zero and a triple ω = (a0, a1, a2) of positive integers.

Let B = k[X0, X1, X2] = k[3]. The symbol (B, ω) means B regarded as an N-graded ring,
B = ⊕i∈NBi, where B0 = k and Xi ∈ Bai

for i ∈ {0, 1, 2}. Consider the following subsets

of lnd(B) and klnd(B) respectively:

lnd(B, ω) = {D ∈ lnd(B) | D is homogeneous with respect to the grading of (B, ω) }
klnd(B, ω) = { kerD | D ∈ lnd(B, ω) and D 6= 0 } .

7.7.1. Lemma. For a subalgebra A of B, tfae:

(1) A ∈ klnd(B, ω)

(2) A ∈ klnd(B) and A is a homogeneous subring of B
(3) A ∈ klnd(B) and A = k[f, g] for some homogeneous f, g.

Moreover, if A = k[f, g] satisfies condition (3) then

lndA(B, ω) =
{
α∆(f,g)

∣∣ α is a homogeneous element of A
}
.
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Proof. It is obvious that (1) implies (2). If (2) holds then Miyanishi’s theorem 7.1 tells
us that A = k[2]; then (3) follows from 7.6.

It is easy to see that if f, g ∈ B are homogeneous then so is ∆(f,g) : B → B. In view of

7.2, we obtain that (3) implies both (1) and the description of lndA(B, ω). �

Remark. Zurkowski [21] gives a direct proof (i.e. a proof which does not rely on Miyanishi’s

result) of the fact that if A ∈ klnd(B, ω) then A = k[f, g] for some homogeneous f, g. A
simplified version of Zurkowski’s argument is given in Daan Holtackers’MSc thesis [12].

7.8. Weighted projective planes. Fix an algebraically closed field k and a triple
ω = (a0, a1, a2) of positive integers. Consider the N-graded ring B = k[X0, X1, X2] = k[3]

where B0 = k and (for all i ∈ {0, 1, 2}) Xi ∈ Bai
. The Proj of that graded ring is denoted

Pω and is called the weighted projective plane determined by weights ω = (a0, a1, a2). One
can see that Pω is an algebraic surface which is projective and normal.

Concretely, define an equivalence relation ∼ on the set k3 \ {(0, 0, 0)} by declaring that

(x0, x1, x2) ∼ (y0, y1, y2) if for some t ∈ k∗ we have (y0, y1, y2) = (ta0x0, t
a1x1, t

a2x2). Then
Pω is the set of equivalence classes, and each equivalence class is called a point of Pω. The

equivalence class of (x0, x1, x2) is denoted (x0 : x1 : x2).
If h ∈ B is homogeneous with respect to the above grading, then the zero set of h is

well-defined: V (h) = {(x0 : x1 : x2) ∈ Pω | h(x0 : x1 : x2) = 0}.
Note that if ω = (1, 1, 1) then Pω = P2 is the usual projective plane.

8. Homogeneous derivations of k[3]

The references for this section are: [4], [5], [9], [10], [6]. In this section, k is an alge-
braically closed field of characteristic zero, B = k[X0, X1, X2] = k[3] and ω = (a0, a1, a2),
where a0, a1, a2 are positive integers. The symbol (B, ω) means B regarded as an N-graded
ring, B = ⊕i∈NBi, where B0 = k and Xi ∈ Bai

for i ∈ {0, 1, 2}. Our goal is to describe
the sets lnd(B, ω) and klnd(B, ω) defined in 7.7. By result 7.7.1, we may formulate our
problem as follows (where homogeneity of f, g is relative to the grading of (B, ω)):

8.1. Which homogeneous elements f, g ∈ B are such that k[f, g] ∈ klnd(B, ω) ?

8.2. Example. Consider Freudenburg’s first example of a rank 3 locally nilpotent deriva-

tion of k[3], namely, k[f, g] ∈ klnd(B) where

f = X0X2 −X2
1 , g = X5

0 + 2X3
0X1X2 − 2X2

0X
3
1 +X2

0X
3
2 − 2X0X

2
1X

2
2 +X4

1X2.

In fact we have k[f, g] ∈ klnd(B, ω) where ω = (1, 1, 1). In view of question 8.1, we want
to understand the properties of f, g, or equivalently the properties of the curves F = V (f)
and G = V (g) in P2. We ask:

What is the affine surface P2 \ (F ∪G) ?

To identify that surface, blow-up P2 8 times, as follows:
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−1 F̃

S

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

P
P

P
PP

P
P

P
PP

P
P

P
PP

P
P

P
PP

G̃

−2 −1 −3 −2 −2 −2 −2 −2

−1

π−−−−−→

P2

s

G
25

F

4

π−1(F ∪G) = union of the 10 curves pictured in S

Then P2 \ (F ∪ G) ∼= S minus those 10 curves. Further blowing-up and blowing-down
transforms “S minus the 10 curves” into:

1 1

S′

�
�

�
�

��P
P

P
P

PP

Thus S ′ = P2 and P2 \ (F ∪G) ∼= P2 minus two lines. So we conclude:

(27) The surface P2 \ (F ∪G) is isomorphic to A1
∗ × A1

where A1
∗ denotes A1 minus a point. We will see in 8.8 that every element k[f, g] of

klnd(B, ω) satisfies (27), and conversely.

We now return to the general situation, i.e., let (B, ω) be as in the introduction of
the present section. Note that if d = gcd(a0, a1, a2) and ω′ = (a0/d, a1/d, a2/d) then
a derivation of B is ω-homogeneous if and only if it is ω′-homogeneous; so lnd(B, ω) =
lnd(B, ω′) and klnd(B, ω) = klnd(B, ω′) and consequently we may assume throughout:

(28) gcd(a0, a1, a2) = 1.

Assumption (28) is in effect until the end of section 8. The problem splits into two cases:

“Easy” case: a0, a1, a2 are not pairwise relatively prime.

Hard case: a0, a1, a2 are pairwise relatively prime.

Before discussing how to answer question 8.1 in each case, we define:

8.3. A homogeneous coordinate system ofB is an ordered triple (u0, u1, u2) of homogeneous

elements of B satisfying k[u0, u1, u2] = B.

Exercise 8.1. If (u0, u1, u2) is any homogeneous coordinate system of B then the triple

(deg u0, deg u1, deg u2) is a permutation of (a0, a1, a2).
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The “easy” case

Assume that ω = (a0, a1, a2) satisfies (28) and:

(29) a0, a1, a2 are not pairwise relatively prime.

8.4. Example. Suppose that ω = (4, 6, 7). Note that k[X0, X1] ∈ klnd(B, ω) and that

gcd(degX0, degX1) = 2; thus:

k[f, g] ∈ klnd(B, ω) 6=⇒ gcd(deg f, deg g) = 1.

Compare with 8.7.

Exercise 8.2. With ω = (4, 6, 7), verify that k[X0, X
2
0X1 + X2

2 ] ∈ klnd(B, ω).

Under assumption (29), one can show that all elements of lnd(B, ω) have rank < 3.
More precisely, the main result is as follows:

8.5. Theorem. Let A ∈ klnd(B, ω). Then there exists a homogeneous coordinate system
(X0, X1, X2) of B such that one of the following conditions holds:

(1) A = k[X0, X1].
(2) gcd(degX0, degX2) = 1 and A = k[X0, X

e
0X1 + ψ(X0, X2)], for some e ∈ N and

some ψ(X0, X2) ∈ k[X0, X2] such that Xe
0X1 + ψ(X0, X2) is homogeneous and

irreducible.
(3) gcd(degX0, degX1) = 1 = gcd(degX0, degX2) and A = k[X0, P ] for some ho-

mogeneous P ∈ B which satisfies gcdB(PX1
, PX2

) = 1 and which is a variable of
k(X0)[X1, X2].

Refer to [6] for the proof of 8.5 and also for that of the following:

8.6. Corollary. If gcd(ai, aj) > 1 for all {i, j} ⊂ {0, 1, 2}, then:

klnd(B, ω) =
{

k[X0, X1], k[X0, X2], k[X1, X2]
}
.

The hard case

Until the end of section 8, we assume that ω = (a0, a1, a2) satisfies:

(30) a0, a1, a2 are pairwise relatively prime.

Then the first result is:

8.7. Proposition. Suppose that k[f, g] is an element of klnd(B, ω), where f, g are ho-

mogeneous. Then gcd(deg f, deg g) = 1.

Proof. This is a corollary to Theorem 3.7 of [4]. A different proof is given in [5]. �

8.8. Theorem ([4], Theorem 3.5). For homogeneous elements f, g ∈ B, tfae:

(1) k[f, g] ∈ klnd(B, ω)

(2) f, g are irreducible and Pω\V (fg) ∼= A1
∗×A1 (isomorphism of algebraic surfaces).

See 7.8 for the definition of Pω. Note that 8.8 replaces the problem of describing
klnd(B, ω) by a problem of geometry, namely:
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What are all pairs of curves C1, C2 in Pω such that Pω \ (C1 ∪ C2) ∼= A1
∗ × A1 ?

Proof of 8.8. Note that condition 8.8(2) is equivalent to:

8.8(2′) f, g are irreducible and B(fg) = k[ζ, ζ−1][1] for some ζ ∈ B(fg) such that ζ 6∈ k,

where B(fg) denotes the homogeneous localization of B at the set {1, fg, (fg)2, (fg)3, . . . }.
We assume throughout that at least one of conditions 8.8(1), 8.8(2) (or 8.8(2′)) holds. Let
p = deg f , q = deg g and A = k[f, g]. We claim:

(31) gcd(p, q) = 1 and f, g are irreducible and not associates.

Indeed, if 8.8(1) holds then gcd(p, q) = 1 by 8.7 and f, g are not associates as trdegk(A) =

2 by 2.10; as f, g are irreducible in A and A is factorially closed in B, it follows that f, g are
irreducible in B. On the other hand, if 8.8(2) holds then the Picard group of Pω \ V (fg)
is trivial; as this group is Z/dZ where d = gcd(p, q), we get gcd(p, q) = 1. If f, g are

associates then B(fg) = B(f2) = B(f) and it is easily verified that B∗
(f) = k∗, but this is

impossible because 8.8(2′) implies that some unit of B(fg) does not belong to k; so f, g are
not associates. This shows that (31) is true. It follows that if we define ξ = f q/gp ∈ B(fg)

then

(32) A(fg) = k[ξ, ξ−1].

Suppose that 8.8(1) holds; we shall now prove that 8.8(2′) is satisfied. In view of (31)
and (32), it suffices to show that

(33) B(fg) = (A(fg))
[1].

By 8.8(1), A = kerD for some 0 6= D ∈ lnd(B, ω); then Afg is the kernel of the

localization Dfg : Bfg → Bfg of D. By (31), we may choose i, j ∈ Z such that pi + qj +
deg(D) = 0; define D = f igjDfg, then D : Bfg → Bfg is locally nilpotent, homogeneous
of degree zero and has kernel Afg; the restriction D0 : B(fg) → B(fg) of D is locally

nilpotent and ker(D0) = Afg ∩ B(fg) = A(fg). We claim that

(34) B(fg) is a UFD

and that each irreducible element π of A(fg) satisfies:

(35) A(fg)/πA(fg) is algebraically closed in B(fg)/πB(fg).

Indeed, note that the Z-graded factorial domain R = Bfg satisfies the hypothesis of
7.4 because gcd(p, q) = 1; thus (34) holds. Since k is an algebraically closed field by

assumption, we have A(fg)/πA(fg) = k by (32) and hence (35) holds. From (34), (35) and
2.23, we obtain (33). This shows that 8.8(1) implies 8.8(2′).

Conversely, suppose that 8.8(2′) holds. In order to prove 8.8(1), it suffices to show that

A ∈ klnd(B) (then condition (3) of 7.7.1 is satisfied).
As ζ is a unit of B(fg), we have ζ = λf igj for some λ ∈ k∗ and i, j ∈ Z; we also have

0 = deg ζ = pi + qj, and it follows from gcd(p, q) = 1 that ζ = λξn for some n ∈ Z. We
also have ξ ∈ B∗

(fg) = k[ζ, ζ−1]∗, so ξ = µζm for some µ ∈ k∗ and m ∈ Z. We conclude

that mn = 1 and that k[ζ, ζ−1] = k[ξ, ξ−1] = A(fg). Thus 8.8(2′) implies that (33) holds;
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by 7.5 we obtain Bfg = A
[1]
fg, so in particular Afg is the kernel of some D ∈ lnd(Bfg).

Consider D′ = fugvD ∈ lnd(Bfg), where u, v ∈ N are such that fugvD(Xi) ∈ B for
all i ∈ {0, 1, 2} (recall that B = k[X0, X1, X2]). Then D′(B) ⊆ B and the restriction
D : B → B of D′ satisfies D ∈ lnd(B) and kerD = Afg ∩ B. So there remains only to

show that Afg ∩ B = A. As a first step, we prove:

(36) A ∩ fB = fA.

It suffices to verify that if h ∈ A ∩ fB and h is homogeneous then h ∈ fA. As h ∈
A = k[f, g], we have h = fα + β where α ∈ A and β ∈ k[g]; by homogeneity of h, we

have in fact β = λgn for some λ ∈ k and n ∈ N. Then λgn ∈ fB. We have f 6 | gn
by (31), so λ = 0 and h = fα ∈ fA. This proves (36) and, by symmetry, we also have
A ∩ gB = gA. It follows by induction that A ∩ f igjB = f igjA for all i, j ∈ N, and

consequently Afg ∩ B = A. Thus A ∈ klnd(B) and we have shown that 8.8(2′) implies
8.8(1). �

Affine rulings and locally nilpotent derivations

There is a rich interplay between the theory of algebraic surfaces and homogeneous
locally nilpotent derivations of k[3]. As an example, [6] contains the following result:

8.9. Theorem. Consider (B, ω), where ω is any triple of positive integers. Given any

A,A′ ∈ klnd(B, ω), there exists a finite sequence of local slice constructions which trans-
forms A into A′.

The statement of 8.9 is purely algebraic, but we don’t know how to give a direct,
algebraic proof of it. In the following paragraphs, we indicate how geometry can be used
to prove the “hard case” of that result, i.e., the case where ω is pairwise relatively prime.
(We will not discuss the “easy case”, whose proof does not require geometry.)

8.10. Definition. Fix an algebraic surface X which is complete, normal and rational (for
instance, X = Pω). An explicit affine ruling of X is a morphism ρ : U → P1 satisfying:

(1) The image of ρ is an open subset Γ 6= ∅ of P1

(2) U 6= ∅ is an open subset of X such that U ∼= Γ× A1

(3) ρ is the composition U
∼=−−→ Γ× A1 proj.−−→ Γ ↪→ P1.

8.11. Example. Consider (B, ω) and Pω as before, where ω = (a0, a1, a2) is pairwise
relatively prime. Consider an element k[f, g] of klnd(B, ω), where f, g are homogeneous.
We show that the ordered pair (f, g) determines an explicit affine ruling of Pω.

Let p = deg f , q = deg g and ξ = f q/gp, then k[ξ, ξ−1] is a subring of B(fg). Applying
the functor Spec to the inclusion homomorphism k[ξ, ξ−1] ↪→ B(fg) yields a morphism

U → Γ, where U = SpecB(fg) = Pω \ (V (f) ∪ V (g)) and Γ = Spec k[ξ, ξ−1] = P1 minus

two points. As shown in the proof of 8.8, we have B(fg) = k[ξ, ξ−1][1]; this means that the
composition U → Γ ↪→ P1 (which we denote ρ : U → P1) is an explicit affine ruling of Pω.

Moreover, the map ρ is described by:

(37)
ρ : U −→ P1

(x0 : x1 : x2) 7−→
(
f(x0, x1, x2)

q : g(x0, x1, x2)p
)
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8.12. Let X be a surface as in 8.10 and let ρ : U → P1 be an explicit affine ruling of X.

(1) If Γ′ 6= ∅ is an open subset of the image of ρ then the restriction ρ′ : ρ−1(Γ′)→ P1

of ρ is an explicit affine ruling of X; we write ρ′ ≤ ρ in this situation.

(2) If θ : P1 → P1 is an automorphism then the composite ρ′ : U
ρ−−→ P1 θ−→ P1 is an

explicit affine ruling of X; we write ρ � ρ′ in this case.

Consider the set S of explicit affine rulings of X. Two elements ρ, ρ′ ∈ S are equivalent if
there exists a finite sequence ρ0, . . . , ρn of elements of S satisfying ρ0 = ρ, ρn = ρ′ and

∀i<n ρi ≤ ρi+1 or ρi+1 ≤ ρi or ρi � ρi+1.

By an affine ruling of X, we mean an equivalence class of explicit affine rulings of X. We

write
afrul(X) = set of affine rulings of X.

8.12.1. Each explicit affine ruling ρ : U → P1 of X extends to a rational map X 99K P1

defined everywhere outside a finite set of points (because X is normal); in turn, this
rational map determines a linear system Λ on X without fixed components. Then ρ 7→ Λ
is a well-defined map and one can see that two explicit affine rulings are equivalent if

and only if they determine the same linear system. (The image of the map ρ 7→ Λ is a
certain collection of linear systems on X; one may consider that these linear systems are
the affine rulings—this is how the notion of affine ruling is defined in papers [9], [10] and

[6].)

8.13. Theorem. Consider (B, ω) and Pω as before, where ω = (a0, a1, a2) is pairwise

relatively prime. Then the process described in 8.11 determines a well-defined bijection

klnd(B, ω) −→ afrul(Pω).

Comments. Let A ∈ klnd(B, ω). Then example 8.11 shows that each homogeneous
coordinate system (f, g) of A determines an explicit affine ruling of Pω, and it is not

difficult to see that if (f, g) and (f ′, g′) are two homogeneous coordinate systems of A
then the corresponding explicit affine rulings are equivalent; thus one gets a well-defined
set map klnd(B, ω)→ afrul(Pω). It is proved in [6] that this map is bijective. �

So describing klnd(B, ω) “reduces” to describing afrul(Pω). Paper [10] gives a geo-
metric classification of afrul(Pω) and [6] derives algebraic consequences for klnd(B, ω).
To conclude this section, we mention some aspects of that work; this part is very sketchy,
we only give a vague idea of how this works.

8.14. (1) Fix a surface X as in 8.10. To each affine ruling Λ ∈ afrul(X), one
associates a set P(Λ) and, given P ∈ P(Λ), one defines an element Λ ∗ P of
afrul(X). The cardinality of the set P(Λ) is that of the ground field k. The

object P may be thought of as a “recipe” for modifying Λ and the affine ruling
Λ ∗P is obtained by modifying Λ according to P . The modification is achieved by
performing a (possibly long) sequence of blowings-up and blowings-down. Given

Λ,Λ′ ∈ afrul(X), we call Λ′ a modification of Λ if there exists P ∈ P(Λ) such
that Λ ∗ P = Λ′. Then one shows that if Λ′ is a modification of Λ then Λ is a

modification of Λ′.
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(2) Using the description of afrul(Pω) given in [10], paper [6] proves that if ω is any
triple of positive integers then:

Given any two affine rulings Λ, Λ′ of Pω, there exists a finite sequence

of modifications which transforms Λ into Λ′.

(3) Suppose that ω is pairwise relatively prime, let A,A′ ∈ klnd(B, ω) and let Λ,Λ′ ∈
afrul(Pω) be the images of A and A′ respectively, under the bijection of 8.13.
Then [6] also proves:

If Λ′ is a modification of Λ then A′ can be obtained from A by a “local
slice construction”.

Parts (2) and (3) of 8.14 immediately imply that 8.9 is true when ω is pairwise relatively
prime. Regarding the case where ω is not pairwise relatively prime, we will only say that
its proof is much easier and does not require geometry.

9. Danielewski surfaces and local slice construction

In this section, k is any field of characteristic zero.
We present some general facts about Danielewski surfaces and then use some of that

material to clarify Freudenburg’s “local slice construction”. The main reference for this
section is [7], but note that some of the results (notably 9.5.2 and 9.6) can also be found
in the work of Makar-Limanov (see [7] for references).

9.1. Definition. Let B be a k-algebra. We call B a Danielewski surface over k if B is
isomorphic to

(38) k[X, Y, Z]/(XY − ϕ(Z))

for some ϕ(Z) ∈ k[Z]\k (where X, Y, Z are indeterminates). If B is a Danielewski surface
over k then any triple (x, y, z) ∈ B3 satisfying B = k[x, y, z] and xy ∈ k[z] \ k is called a

coordinate system of B.

9.2. Example. Let B = k[U, V ] = k[2], then B is a Danielewski surface over k (take

ϕ of degree 1 in (38)). The triple (U, V, UV ) is a coordinate system of the Danielewski
surface B. The triple (x, y, z) = (0, U, V ) satisfies B = k[x, y, z] and xy ∈ k[z], but is not

a coordinate system of B because xy ∈ k.

9.3. Lemma. Let B be a Danielewski surface over k.

(1) B is a normal domain, trdegk B = 2 and B∗ = k∗.

(2) B has at least one coordinate system.

(3) If (x, y, z) is any coordinate system of B then there exists a unique D ∈ lnd(B)
such that D(x) = 0 and D(z) = x. Moreover, D is irreducible, kerD = k[x] and
lndk[x](B) = {αD | α ∈ k[x]}.

(4) Let (x, y, z) be a coordinate system of B and let I be the principal ideal k[z] ∩ xB
of k[z]. Then xy is a generator of I.

Proof. We may assume that B = k[X, Y, Z]/(XY − ψ(Z)) where ψ(Z) ∈ k[Z] \ k. As

ψ(Z) 6= 0, XY − ψ(Z) is an irreducible element of k[X, Y, Z]; so it is clear that B is a
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domain and that trdegk(B) = 2. Let π1 : k[X, Y, Z] → B be the canonical epimorphism.
Observe that if π1(X)π1(Y ) = λ ∈ k then XY −λ ∈ ker π1, so XY −ψ(Z) divides XY −λ
in k[X, Y, Z]; this is absurd because degZ(XY − ψ(Z)) > 0, so π1(X)π1(Y ) 6∈ k and it

follows that (π1(X), π1(Y ), π1(Z)) is a coordinate system of B, proving assertion (2).
Let (x, y, z) be any coordinate system of B and consider the surjective k-homomorphism

π : k[X, Y, Z] → B which maps X, Y, Z to x, y, z respectively. As B is a domain of
transcendence degree 2 over k, ker π is a principal ideal generated by an irreducible element
of k[X, Y, Z]. Since xy ∈ k[z] \ k, there exists ϕ(Z) ∈ k[Z] such that degZ ϕ(Z) > 0 and

xy = ϕ(z); then P = XY − ϕ(Z) belongs to ker π and is irreducible; consequently
ker π = (P ). Thus we may assume that B = k[X, Y, Z]/(XY − ϕ(Z)) and that π is the
canonical epimorphism. Let n = degZ(P ) = degZ ϕ(Z) and recall that n > 0. Viewing

P as a polynomial in Z with coefficients in k[X, Y ], we note that its leading coefficient
belongs to k[X, Y ]∗; so, by the division algorithm, for each F ∈ k[X, Y, Z] there exists a
unique pair (Q,G) of elements of k[X, Y, Z] satisfying F = PQ + G and degZ(G) < n;

consequently,

(39) For each b ∈ B, there exists a unique G ∈ k[X, Y, Z] such that degZ(G) < n and
b = G(x, y, z)

or equivalently:

(40) x, y are algebraically independent over k and B is a free module over k[x, y] with

basis {1, z, . . . , zn−1}.
From (40) we deduce:

(41) k(x) ∩ B = k[x].

Indeed, if b 6= 0 belongs to k(x) ∩ B then write b =
∑

i<n aiz
i (with ai ∈ k[x, y]); then

there exist a, a′ ∈ k[x]\{0} such that a′ = ab =
∑

i<n(aai)z
i, which implies that ai = 0 for

all i > 0; so b ∈ k[x, y]∩k(x) = k[x] and (41) is true. Note that y = x−1ϕ(z) ∈ k(x)[z], so

it is clear that k[x, z] ⊆ B ⊆ k(x)[z]; thus if we let S = k[x] \ {0} then S−1B = k(x)[z] =
k(x)[1], from which we deduce:

(42) k[x] is factorially closed (and hence algebraically closed) in B.

Indeed, if b1, b2 ∈ B satisfy b1b2 ∈ k[x] \ {0} then b1, b2 are units of S−1B = k(x)[1] and so
belong to B∩k(x) = k[x]. Statement (42) implies that B∗ = k[x]∗; as x is transcendental

over k by (40), we obtain B∗ = k∗. We claim:

(43) B = k(x)[z] ∩ k(y)[z] (intersection in FracB).

Consider β ∈ k(x)[z] ∩ k(y)[z] and write β = F (x, y, z)/f(x) = G(x, y, z)/g(y) where
F (X, Y, Z), G(X, Y, Z) ∈ k[X, Y, Z], f(X) ∈ k[X] and g(Y ) ∈ k[Y ]. By (39), we may

arrange that degZ(F ) < n and degZ(G) < n. Then g(y)F (x, y, z) = f(x)G(x, y, z) and
the uniqueness claim in (39) implies that g(Y )F (X, Y, Z) = f(X)G(X, Y, Z) in k[X, Y, Z].
So f | F in k[X, Y, Z], i.e., F = fQ where Q ∈ k[X, Y, Z]; thus β = Q(x, y, z) ∈ B and

(43) is true. As k(x)[z] = k(x)[1] and k(y)[z] = k(y)[1] are normal, so is their intersection
B. Assertion (1) is proved.



39

It is easy to see that the k-derivation x ∂
∂z

of the field k(x, z) = Frac(B) maps B into
itself; let D : B → B be the restriction, then clearly D is locally nilpotent and is the only

k-derivation of B which maps x to 0 and z to x. We have k[x] ≤ kerD ≤ B; consideration
of transcendence degrees shows that kerD is algebraic over k[x], so kerD = k[x] by (42).
Let us now prove:

(44) lndk[x](B) = {αD | α ∈ k[x]} .
Consider a nonzero element D′ of lndk[x](B) and note that kerD′ = k[x]. Exercise 2.12
implies that D′(z) ∈ k[x] \ {0} and that D(z)D′ = D′(z)D, so

(45) xD′ = D′(z)D.

By (40), we may write D′y =
∑

i<n aiz
i where ai ∈ k[x, y], so

(46)
∑

i<n(xai)z
i = xD′(y) = D′(z)D(y) = D′(z)ϕ′(z).

As D′z ∈ k[x], (46) and (40) imply that ∀i xai = λiD
′(z), where the λi ∈ k are defined

by ϕ′(Z) =
∑

i<n λiZ
i (and hence are not all zero). So D′z ∈ k[x] ∩ xk[x, y] = xk[x],

i.e., D′z = xα for some α ∈ k[x]. Thus (45) gives D′ = αD, which proves (44). It
follows that D is irreducible. Indeed, 2.19 implies that D = α0D0 for some α0 ∈ k[x]

and some irreducible D0 ∈ lndk[x](B); then (44) gives D0 = αD for some α ∈ k[x], so
D = α0αD and hence α, α0 ∈ k∗. So D is irreducible and assertion (3) is proved. To
prove assertion (4), consider:

k[Z]
u−−−→ k[X, Y, Z]

v

y∼=

yπ

k[z]
f−−−→ k[X, Y, Z]/(XY − ϕ(Z))

g−−−→ k[X, Y, Z]/(X,XY − ϕ(Z))

Then it is clear that

(47) ker(g ◦ π ◦ u) = k[Z] ∩ (X,XY − ϕ(Z)) = k[Z] ∩ (X,ϕ(Z)) = ϕ(Z)k[Z]

and ker(g ◦ f) = ϕ(z)k[z] follows by applying v to (47). As

I = ker
(
k[z] ↪→ B → B/xB

)
= ker(g ◦ f),

we conclude that I = ϕ(z)k[z] = xyk[z]. �

Exercise 9.1. Suppose that B is a Danielewski surface over k and that (x, y, z) is a

coordinate system of B. Show:

(1) (y, x, z) is a coordinate system of B; give an example where (z, x, y) is not a coor-

dinate system of B. Show that, for any α, β, γ ∈ k∗, (αx, βy, γz) is a coordinate
system of B.

(2) Any two elements of {x, y, z} are algebraically independent over k.

(3) k[x], k[y] ∈ klnd(B) and k[x] ∩ k[y] = k.

9.4. Lemma. Let B be a Danielewski surface over k and let (x, y, z) and (x′, y′, z′) be two
coordinate systems of B. If k[x] = k[x′] and k[z] = k[z′], then k[y] = k[y′].
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Proof. Since (x′, y′, z′) is a coordinate system and k[z] = k[z′], it follows that (x′, y′, z) is a
coordinate system. By 9.3, we may consider D,D′ ∈ lnd(B) such that Dz = x, D′z = x′

and kerD = k[x] = kerD′; since D′ is irreducible and lndk[x](B) = {αD | α ∈ k[x]}, we

have D′ = λD for some λ ∈ k∗. Then x′ = D′z = λDz = λx and consequenty (x, y′, z)
is a coordinate system. Applying part (4) of 9.3 to each of (x, y, z), (x, y ′, z) shows that

each of xy, xy′ is a generator of the principal ideal I of k[z] defined by I = k[z] ∩ xB.
Thus xy = µxy′ for some µ ∈ k∗, so y = µy′ and consequently k[y] = k[y′]. �

Tame automorphisms of Danielewski surfaces

9.5. Fix a coordinate system γ = (x, y, z) of a Danielewski surface B over k.

9.5.1. Definition.

• Define τ ∈ Autk(B) by τ(x) = y, τ(y) = x and τ(z) = z.

• For each f ∈ k[x], define ∆f ∈ Autk(B) by ∆f(x) = x and ∆f(z) = z + xf(x).
• Let Gγ be the subgroup of Autk(B) generated by {τ} ∪ {∆f | f ∈ k[x]}.

We call Gγ the tame subgroup of Autk(B).

The assignment (α,A) 7−→ α(A), where α ∈ Autk(B) and A ∈ klnd(B), is a left-action
of the group Autk(B) on the set klnd(B). We restrict this action to the subgroup Gγ of
Autk(B), then the main result of [8] is:

9.5.2. Transitivity Theorem. The action of Gγ on klnd(B) is transitive.

As a corollary to the Transitivity Theorem, we obtain the following generalization of
Rentschler’s Theorem (recall that k[2] is a special case of Danielewski surface):

9.5.3. Corollary. Given any D′ ∈ lnd(B), there exists θ ∈ Gγ such that θ ◦ D ◦ θ−1 =
f(x)D for some f(x) ∈ k[x], where D is the unique element of lnd(B) satisfying Dx = 0
and D(z) = x.

Isomorphisms between Danielewski surfaces

Although we don’t need it for our purpose, we mention the following fact (see for
instance 2.10 of [7]).

9.6. Proposition. Let ϕ, ψ ∈ k[Z] \ k and consider the Danielewski surfaces (over k):

B = k[X, Y, Z]/(XY − ϕ(Z)) and B ′ = k[X, Y, Z]/(XY − ψ(Z)).

Then B is k-isomorphic to B ′ if and only if there exist θ ∈ Autk(k[Z]) and λ ∈ k∗ such

that ψ = λθ(ϕ).

Two characterizations of Danielewski surfaces

The following results are Theorems 2.5 and 2.6 of [7].

9.7. Theorem. Let B be a domain containing a field k of characteristic zero, let z ∈ B
and let D1, D2 ∈ lnd(B). Suppose that (z,D1, D2) satisfies:

(i) kerD1 6= kerD2

(ii) For each i = 1, 2, kerDi = k[1] and Di(z) ∈ kerDi \ {0}.
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Then B is a Danielewski surface over k. Moreover, if D1, D2 are irreducible then one of
the following holds:

(1) B = k[2] and D1(z), D2(z) ∈ k∗

(2) B 6= k[2] and (D1(z), D2(z), z) is a coordinate system of B.

9.8. Theorem. Let B be a UFD containing a field k of characteristic zero. Suppose that

D ∈ lnd(B) and z ∈ B satisfy:

kerD = k[Dz] = k[1].

Then B is a Danielewski surface over k and the following hold:

(1) If D is irreducible then there exists y ∈ B such that (Dz, y, z) is a coordinate
system of B.

(2) If D is not irreducible then B = k[z,Dz] = k[2].

Two lemmas on localization

These facts have nothing to do with Danielewski surfaces, but we need them for the
discussion of local slice construction.

9.9. Notation. Given integral domains R ≤ B, we write BR = S−1B where S = R \ {0}
(so RR = FracR). If D : B → B is a derivation, we also write DR = S−1D : BR → BR.

9.10. Lemma. Let R ≤ B be domains, where B is finitely generated as an R-algebra.
Then A 7→ AR is a bijection klndR(B)→ klnd(BR), with inverse A 7→ A ∩B.

Proof. Given A ∈ klndR(B), choose D ∈ lndR(B) \ {0} such that kerD = A. By
exercise 2.1, DR : BR → BR is locally nilpotent and has kernel AR. Since B is a domain,

DR is an extension of D; this implies that DR 6= 0 (so AR ∈ klnd(BR)) and A = kerD =
B ∩ kerDR = B ∩ AR, showing that Λ : klndR(B) → klnd(BR) (A 7→ AR) is well-
defined and injective. To show that Λ is surjective, consider A ∈ klnd(BR). Choose

D ∈ lnd(BR) \ {0} such that ker D = A; note that D is an RR-derivation, because RR

is a field contained in BR (see 2.15). By assumption, we have B = R[b1, . . . , bn] for some

b1, . . . , bn ∈ B. For each i ∈ {1, . . . , n}, we have D(bi) ∈ BR; so there exists r ∈ R \ {0}
satisfying ∀i rD(bi) ∈ B. Since the derivation rD : BR → BR maps R to 0 and maps
each bi in B, it maps B into itself; also, rD is locally nilpotent, since r ∈ ker D. Let

D : B → B be the restriction of rD, then D ∈ lndR(B) and kerD = A, where we define
A = B ∩A. Since D has a unique extension to a derivation of BR, we have DR = rD; in
particular DR 6= 0, so D 6= 0 and A ∈ klndR(B); by exercise 2.1 the kernel of DR is AR,

so we obtain A = AR = Λ(A). So Λ is surjective. �

9.11. Lemma. Let B be a UFD, R a factorially closed subring of B and D : B → B an

irreducible R-derivation. Then DR : BR → BR is irreducible.

Proof. Assume the contrary; then there exists b ∈ BR \BR
∗ such that DR(BR) ⊆ bBR. In

fact, such an element b may be chosen in B. Then some prime factor p ∈ B of b satisfies
p 6∈ BR

∗. Since D is irreducible and p 6∈ B∗, we may choose x ∈ B such that Dx 6∈ pB.

Since D(x) = DR(x) ∈ pBR, there exists r ∈ R \ {0} such that p | rD(x) in B. Then p | r
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in B; since r ∈ R \ {0} and R is an factorially closed subring of B, p ∈ R \ {0}. Thus
p ∈ BR

∗, a contradiction. �

Local slice construction revisited

Adopting the viewpoint of Danielewski surfaces allows us to clarify and generalize
the notion of “local slice construction”. We do this in two steps. The first approach
(9.12) closely follows Freudenburg’s method in the case B = k[3] but only gives a partial
clarification; the second approach (9.15) is simpler and more general.

Let k be any field of characteristic zero.

9.12. Let B be a k-affine UFD. Suppose that (A,R,w) satisfies:

(i) A ∈ klnd(B)

(ii) R is a k-subalgebra of A such that AR = K [1] (where K = RR)

(iii) w ∈ B satisfies AR = K[Dw], where D : B → B is the unique2 irreducible
derivation with kernel A (thus D ∈ lnd(B) and D 6= 0; see 2.20).

Then (A,R,w) determines an element A′ of klnd(B) which we now proceed to define.
We say that A′ is obtained from (A,R,w) by “local slice construction”, and we write
A′ = lsc(A,R,w).

9.12.1. Proposition and definition. Let B, (A,R,w), K and D be as in 9.12. Then

BR is a Danielewski surface over K and there exists v ∈ B such that (Dw, v, w) is a
coordinate system of BR. More generally, consider any (u, v) ∈ B ×B satisfying

(48) (u, v, w) is a coordinate system of BR and AR = K[u].

Then the following hold:

(1) The ring K[v] is independent of the choice of (u, v) satisfying (48).

(2) The ring K[v] ∩B belongs to klndR(B).

We define lsc(A,R,w) = K[v] ∩ B.

Remark. R[v] ≤ lsc(A,R,w) ≤ K[v], so lsc(A,R,w) is the unique element of klnd(B)

which contains R[v].

Proof of 9.12.1. By exercise 2.1, DR : BR → BR is locally nilpotent and has kernel

AR = K [1]. Since (BR)∗ = (AR)∗ = K∗, it follows that the ring R′ = B ∩K is factorially
closed in B; thus DR′ : BR′ → BR′ is irreducible by 9.11. As R ≤ R′ ≤ K, we have
BR = BR′ and DR = DR′ , so DR is irreducible. It follows from 9.8 that BR is a Danielewski

surface over K and that, for some v ∈ BR, (Dw, v, w) is a coordinate system of BR.
Multiplying v by a suitable element of R \ {0}, we may arrange that v ∈ B; then the pair

(Dw, v) ∈ B ×B satisfies (48).
Assertion (1) is an immediate consequence of 9.4. If (u, v) satisfies (48) then (u, v, w) is

a coordinate system of BR so exercise 9.1 implies that K[v] ∈ klnd(BR); then K[v]∩B ∈
klndR(B) by 9.10. �

2D is unique up to multiplication by an element of B∗.
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9.13. Example. We revisit Freudenburg’s “(2, 5)-example”. Let B = k[X, Y, Z] and
f = XZ − Y 2, then A = k[X, f ] ∈ klnd(B). To perform a LSC on A, we define:

R = k[f ] and w = X3 + Y f.

We claim that (A,R,w) satisfy conditions (i)–(iii) of 9.12. Indeed, the unique irreducible
D ∈ Der(B) with kernel A is D = ∆(X,f) = −X ∂

∂Y
− 2Y ∂

∂Z
, so Dw = D(X3 + Y f) =

fDY = −Xf . Writing K = FracR = k(f), we have

K[Dw] = k(f)[−Xf ] = k(f)[X] = AR,

so conditions (i)–(iii) hold.
By 9.12.1, it follows thatBR = k(f)[X, Y, Z] is a Danielewski surface over k(f) and that,

for a suitable v ∈ B, (−Xf, v, w) is a coordinate system of BR; consequently, (X, v, w) is
a coordinate system of BR so (X, v) satisfies condition (48). To compute v, we consider
the equation Xv = ϕ(w), where ϕ(T ) ∈ K[T ] has positive T -degree. Replacing v and

ϕ(T ) by rv and rϕ(T ) respectively, where r ∈ R \ {0}, we may assume that ϕ(T ) ∈ R[T ].
In other words, we seek an irreducible Φ(S, T ) ∈ k[S, T ] satisfying:

Xv = Φ(f, w), degT Φ > 0.

Following Freudenburg’s technique we set X = 0 and find Φ(−Y 2,−Y 3) = 0, from which

we find Φ = S3 + T 2. So Xv = f 3 + w2 and hence

v = X5 + 2X3Y Z − 2X2Y 3 + X2Z3 − 2XY 2Z2 + Y 4Z.

Then lsc(A,R,w) is the unique element of klnd(B) containing R[v] = k[f, v]; one can
see that lsc(A,R,w) = k[f, v].

Remark. In the above example, we know that BR is a Danielewski surface over k(f), that
(X, v, w) is a coordinate system of BR and that Xv = f 3 + w2; consequently BR is the
Danielewski surface k(f)[X1, X2, X3]/(X1X2 −X2

3 − f 3).

9.14. Example. Let B = k[T1, T2, X, Y, Z] = k[5] and consider ∆ ∈ lnd(B) defined by

∆(T1) = 0 = ∆(T2), ∆(X) = T1, ∆(Y ) = T2, ∆(Z) = 1 + L, where L = T2X − T1Y.

The derivation ∆ was studied by Winkelman in [18]. We show that it can be obtained
from ∂/∂Z by performing one LSC.

Let D = ∂/∂Z, A = ker(D) = k[T1, T2, X, Y ], R = k[T1, T2, L] ≤ A and
w = X(T1Z −X(1 + L)). Then Dw = XT1. Writing K = FracR = k(T1, T2, L), we have

AR = K[X, Y ] = K[X] = K[XT1] = K[Dw] so (A,R,w) satisfies conditions (i)-(iii) of
9.12. By 9.12.1, BR is a Danielewski surface over K and, for a suitable v ∈ B, (XT1, v, w)
is a coordinate system of BR; thus (X, v, w) is a coordinate system of BR.

We seek v. Note that Y ∈ K[X,Z], so BR = K[X,Z] = K [2] (which is a Danielewski
surface). As BR = K[X,Z] = K[X, T1Z − X(1 + L)] = K[X, v], where we write
v = T1Z − X(1 + L), it follows that (X, v,Xv) = (X, v, w) is a coordinate system of

the Danielewski surface BR. Thus (X, v) satisfies (48). Consequently lsc(A,R,w) is the
unique element of klnd(B) which contains R[v] = k[T1, T2, L, v]. As k[T1, T2, L, v] ≤
ker ∆ is clear, we have lsc(A,R,w) = ker ∆.
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Paragraph 9.15 reformulates the notion of local slice construction in such a way that
the concept is now completely transparent (but the practical calculations are the same as
before).

9.15. Suppose that A ∈ klnd(B), where B is any domain of characteristic zero. To
perform a LSC on A,

(1) Choose a subring R ≤ A such that BR is a Danielewski surface over K = RR and
B is finitely generated as an R-algebra.

(2) Choose a coordinate system (u, v, w) of BR such that AR = K[u].
(3) Define A′ = K[v]∩B and declare that A′ is obtained from A by performing a local

slice construction.

Comments.

• In step (1), there may not exist a ring R with the desired properties; in that
case, it is impossible to perform a LSC on A. Assuming that such rings R exist,

finding one may be difficult in practice. Note that the same difficulty exists in the
approach of 9.12, i.e., one has to “find” a triple (A,R,w) in order to perform a
LSC.

• Once we have a ring R as in step (1), 9.10 implies that AR belongs to klnd(BR);
then the theory of Danielewski surfaces implies that there exist infinitely many

coordinate systems (u, v, w) of BR satisfying AR = K[u] as in step (2).
• Result 9.10 also implies that, in step (3), A′ ∈ klnd(B) and A′ 6= A.
• It is clear that if A′ can be obtained from A by performing a local slice construction,

then A can be obtained from A′ by performing a local slice construction.

Remark. Of course one could further generalize the LSC by replacing, in 9.15, the class
of Danielewski surfaces by any other class of rings for which we understand the locally
nilpotent derivations. However:

• We don’t know which class of rings would give a useful theory.
• The class of Danielewski surfaces seems to be “the right choice”, and perhaps the

only natural choice, if our aim is to understand the ring B = k[3]. Indeed, the
study of homogeneous locally nilpotent derivations of k[3] leads naturally to that
class of rings, because the geometric modification of affine rulings turns out to be

nothing else than LSC (see part (3) of 8.14). So the arbitrariness character of the
LSC disappears when we consider the homogeneous theory of k[3].

9.16. Definition. Given a domain B of characteristic zero, define the graph klnd(B)
whose vertex-set is klnd(B) and in which distinct vertices A,A′ ∈ klnd(B) are joined

by an edge if one can be obtained from the other by LSC (defined as in 9.15).

More precisely, klnd(B) is a non-oriented graph such that there is at most one edge
between any two vertices, and where no edge connects a vertex to itself. Note that there
is a natural action of Autk(B) on klnd(B).

9.17. Example. If B is a Danielewski surface over some field k of characteristic zero then
klnd(B) is a connected graph with |k| vertices. It is a tree if and only if degϕ ≥ 3,

where B = k[X, Y, Z]/(XY − ϕ(Z)).
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9.18. Corollary. Let B = k[3] where k is a field of characteristic zero and consider two
elements k[f, g] and k[f, h] of klnd(B), where k[f, h] is obtained from k[f, g] by LSC (or
vice-versa). Then klndk[f ](B) contains |k| elements and any two of them are related by

a sequence of LSCs.

Proof. By definition 9.15 of the LSC, there exists a ring R ≤ k[f, g]∩k[f, h] such that BR

is a Danielewski surface over RR. It is easy to see that R = k[f ] has the desired property.
Note that the bijection klnd(BR) → klndR(B) of 9.10 preserves edges, when regarded
as a map from klnd(BR) to klnd(B); thus the assertion follows from 9.17. �

9.19. Example. Let B be a domain of transcendence degree 2 over a field k of charac-
teristic zero. Suppose that ML(B) = k (where ML(B) is the intersection of ker(D) for all

D ∈ lnd(B)) and that B is not a Danielewski surface over k. Then klnd(B) is a graph
with |k| vertices and no edges.

10. Polynomials f(X, Y, Z) whose generic fiber is a Danielewski surface

The graph klnd(B) is an invariant of the ring B and, presumably, can be used for
investigating the structure of B. However 9.19 shows that, for certain rings, it is totally
useless to consider that graph. In the case B = k[3], it seems that klnd(B) contains just
the right amount of edges to be interesting.

From now-on, let B = k[3] where k is a field of characteristic zero. The main question
is:

Question 1. What is the structure of klnd(B) ?

Of course, this is very difficult. A particularly intriguing aspect of question 1 is:

Question 2. Which subalgebras R of B satisfy: BR is a Danielewski surface over RR ?

Exercise 10.1. If R is a subalgebra of B such that BR is a Danielewski surface over RR,
then so is R′ = B ∩ Frac(R). Moreover, BR′ = BR and R′ is factorially closed in B.

In view of this exercise, there is no loss of generality if we restrict question 2 to rings
R which are factorially closed in B. In other words, question 2 should be replaced by:

Question 3. Which subalgebras R of B satisfy:

(∗) BR is a Danielewski surface over RR and R is factorially closed in B.

We shall now discuss question 3.

10.1. Lemma. If R is a subalgebra of B satisfying (∗) then R = k[1].

Proof. Since BR is a Danielewski surface over RR we have trdegRB = 2, so trdegk R = 1.
We also have |klnd(BR)| > 1, so |klndR(B)| > 1 by 9.10. Pick distinct A,A′ ∈
klndR(B). By a result in Freudenburg’s lectures, A∩A′ is either k or k[1]; since A∩A′ ⊇ R
and trdegk R = 1, we have A∩A′ = k[1] and A∩A′ is algebraic over R. As R is factorially
closed in B by assumption, it is algebraically closed in B and hence R = A∩A′ = k[1]. �
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10.2. Definition. Let f ∈ B = k[X, Y, Z] and R = k[f ]. The k(f)-algebra BR =
k(f)[X, Y, Z] is called the generic fiber of f . If BR is a Danielewski surface over RR = k(f),
we call f a polynomial “whose generic fiber is a Danielewski surface”.

10.3. Lemma. If f ∈ B is a polynomial whose generic fiber is a Danielewski surface then
k[f ] is factorially closed in B.

Proof. The fact that k(f)[X, Y, Z] is a Danielewski surface over k(f) implies that

k(f)[X, Y, Z]∗ = k(f)∗

and it follows that R = k(f)∩B is factorially closed in B; as BR = k(f)[X, Y, Z] is clear,
we obtain that R satisfies (∗). By 10.1, it follows that R = k[g] for some g ∈ B, so we

have k[f ] ⊆ k[g] and k(f) = k(g). Consequently, k[f ] = k[g] and hence k[f ] is factorially
closed in B. �

Combining 10.1 and 10.3 gives:

10.4. Corollary. The rings R which answer question 3 are exactly the k[f ] where f ∈ B
is a polynomial whose generic fiber is a Danielewski surface.

Note that 10.4 replaces question 3 by

Question 4. Describe the class (call it “ C ”) of polynomials f ∈ B whose generic fiber
is a Danielewski surface.

Let us make a few comments concerning the class C.

(1) If the local slice construction turns out to be significant in the study of k[3] (and
at this time it seems to be an interesting idea) then the above facts suggest that
the class C should also play a significant rôle.

(2) The class C contains in particular all variables: If f is a variable of B then
k(f)[X, Y, Z] = k(f)[2] is a Danielewski surface, so f ∈ C. Also note the con-
verse: If f ∈ B satisfies k(f)[X, Y, Z] = k(f)[2] then a result of Kaliman [13]
implies that f is a variable of B.

(3) The polynomials
{
Hn

}∞
n=1

all belong to C (these are the standard-homogeneous
polynomials of degrees 1, 2, 5, 13, 34, . . . which were defined inductively in one of
Freudenburg’s lectures). If we assume that k is algebraically closed then, as a
corollary to [11], one can show that the Hn are the only3 standard-homogeneous
elements of C. The same list of polynomials has arisen in the work of several
researchers (for instance Kashiwara or Gizatullin) investigating problems which
have apparently nothing to do with the LSC. Also note that the zero-set of H3 in
P2 is Yoshihara’s quintic [20].

(4) The elements of C which are homogeneous with respect to some positive weights
ω = (a0, a1, a2) are partially understood: See the discussion of Gizatullin curves
below. However many elements of C are not homogeneous (with respect to positive
weights). For instance, if ϕ(Z) ∈ k[Z] is any nonconstant polynomial then XY −
ϕ(Z) is a member of C (these are among the simplest members of C).

3Up to a linear automorphism of k[X, Y, Z].
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(5) Suppose that f ∈ C. Then it is not difficult to see that the general fiber of f is a
Danielewski surface, i.e., k[X, Y, Z]/(f −λ) is a Danielewski surface for almost all
λ ∈ k. However, in most cases there does not exist an automorphism of k[X, Y, Z]
which maps f − λ to a polynomial of the form XY − ϕ(Z). In other words, this
gives Danielewski surfaces which are embedded in A3 in non-standard ways (this
is the case for Hn − λ when n ≥ 3 and λ 6= 0).

From now-on, assume that k is an algebraically closed field of characteristic zero and
let ω = (a0, a1, a2), where a0, a1, a2 are pairwise relatively prime positive integers. Let
B = k[3] and consider (B, ω) and Pω as in section 8.

10.5. Definition. Let us say that a curve C in Pω is a Gizatullin curve if it is irreducible,
rational and such that:

(?) The affine surface Pω \ C is completable by a zig-zag.

10.6. Theorem. Consider an irreducible f ∈ B which is ω-homogeneous. Then tfae:

(1) V (f) ⊂ Pω is a Gizatullin curve.

(2) f ∈ C, i.e., the generic fiber of f is a Danielewski surface.

This result is equivalent to Proposition 7.3 of [11]. That paper also explains how to
construct all Gizatullin curves of Pω, for any ω. In this sense we can say that the ω-
homogeneous elements of C are (at least partially) understood.

References

1. J. Berson, Derivations on polynomial rings over a domain, MSc thesis, University of Nijmegen, The

Netherlands, 1999.

2. S.M. Bhatwadekar and A.K. Dutta, Kernel of Locally Nilpotent R-Derivations of R[X, Y ], Trans.

Amer. Math. Soc. 349 (1997), 3303–3319.

3. D. Daigle, On some properties of locally nilpotent derivations, J. Pure Appl. Algebra 114 (1997),

221–230.

4. , Homogeneous locally nilpotent derivations of k[x, y, z], J. Pure Appl. Algebra 128 (1998),

109–132.

5. , On kernels of homogeneous locally nilpotent derivations of k[x, y, z], Osaka J. Math. 37

(2000), 689–699.

6. , Classification of homogeneous locally nilpotent derivations of k[x, y, z], preprint, 2003.

7. , Locally nilpotent derivations and Danielewski surfaces, to appear in Osaka Journal of Math-

ematics, 2003.

8. , On locally nilpotent derivations of k[X1, X2, Y ]/(ϕ(Y )−X1X2), J. Pure and Appl. Algebra

181 (2003), 181–208.

9. D. Daigle and P. Russell, Affine rulings of normal rational surfaces, Osaka J. Math. 38 (2001),

37–100.

10. , On weighted projective planes and their affine rulings, Osaka J. Math. 38 (2001), 101–150.

11. , On log Q-homology planes and weighted projective planes, to appear in Canadian J. of Math.,

2003.

12. D. Holtackers, On kernels of w-homogeneous derivations, MSc thesis, University of Nijmegen, The

Netherlands, 2003.

13. S. Kaliman, Polynomials with general C2-fibers are variables, Pacific J. Math. 203 (2002), 161–190.



48

14. M. Miyanishi, Normal affine subalgebras of a polynomial ring, Algebraic and Topological Theories—to

the memory of Dr. Takehiko MIYATA, Kinokuniya, 1985, pp. 37–51.

15. K.P. Russell and A. Sathaye, On finding and cancelling variables in k[x, y, z], J. of Algebra 57 (1979),

151–166.

16. P. Eakin S.S. Abhyankar and W. Heinzer, On the uniqueness of the coefficient ring in a polynomial

ring, J. Algebra 23 (1972), 310–342.

17. A. van den Essen and P. van Rossum, Coordinates in two variables over a Q-algebra, Report 0033,

Department of Mathematics, University of Nijmegen, The Netherlands, December 2000.

18. J. Winkelmann, On free holomorphic C-actions on C n and homogeneous Stein manifolds, Math. Ann.

286 (1990), 593–612.

19. D. Wright, On the jacobian conjecture, Illinois J. of Math. 25 (1981), 423–440.

20. H. Yoshihara, On Plane Rational Curves, Proc. Japan Acad. (Ser. A) 55 (1979), 152–155.

21. V.D. Zurkowski, Locally finite derivations, To appear in Rocky Mount. J. of Math.


